Information on Result #547505
There is no linear OA(4260, 310, F4, 192) (dual of [310, 50, 193]-code), because residual code would yield OA(468, 117, S4, 48), but
- the linear programming bound shows that M ≥ 17 386566 400310 365130 429344 698706 546300 548809 167457 041405 229063 271574 299683 241127 057478 266601 477863 676931 347562 102784 / 194 255471 902233 779114 903901 006951 502367 530957 736648 427641 695122 360967 936465 > 468 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(4260, 310, F4, 2, 192) (dual of [(310, 2), 360, 193]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(4260, 310, F4, 3, 192) (dual of [(310, 3), 670, 193]-NRT-code) | [i] | ||
3 | No digital (68, 260, 310)-net over F4 | [i] | Extracting Embedded Orthogonal Array |