Information on Result #547611
There is no linear OA(8170, 389, F8, 144) (dual of [389, 219, 145]-code), because residual code would yield OA(826, 244, S8, 18), but
- the linear programming bound shows that M ≥ 377080 730326 957484 118808 951055 960692 370282 905600 / 1 205370 411814 620505 759077 > 826 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(8171, 390, F8, 145) (dual of [390, 219, 146]-code) | [i] | Truncation | |
2 | No linear OA(8172, 391, F8, 146) (dual of [391, 219, 147]-code) | [i] | ||
3 | No linear OA(8173, 392, F8, 147) (dual of [392, 219, 148]-code) | [i] | ||
4 | No linear OOA(8171, 389, F8, 2, 145) (dual of [(389, 2), 607, 146]-NRT-code) | [i] | m-Reduction for OOAs | |
5 | No linear OOA(8172, 389, F8, 2, 146) (dual of [(389, 2), 606, 147]-NRT-code) | [i] | ||
6 | No linear OOA(8173, 389, F8, 2, 147) (dual of [(389, 2), 605, 148]-NRT-code) | [i] | ||
7 | No linear OOA(8170, 389, F8, 2, 144) (dual of [(389, 2), 608, 145]-NRT-code) | [i] | Depth Reduction | |
8 | No linear OOA(8170, 389, F8, 3, 144) (dual of [(389, 3), 997, 145]-NRT-code) | [i] | ||
9 | No digital (26, 170, 389)-net over F8 | [i] | Extracting Embedded Orthogonal Array |