Information on Result #547771

There is no linear OA(3127, 178, F3, 80) (dual of [178, 51, 81]-code), because construction Y1 would yield
  1. OA(3126, 150, S3, 80), but
    • the linear programming bound shows that M ≥ 1 744284 668385 163500 346306 269658 104769 929699 691581 439318 970712 105752 702784 / 1 186440 433087 > 3126 [i]
  2. OA(351, 178, S3, 28), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3127, 178, F3, 2, 80) (dual of [(178, 2), 229, 81]-NRT-code) [i]Depth Reduction
2No linear OOA(3127, 178, F3, 3, 80) (dual of [(178, 3), 407, 81]-NRT-code) [i]
3No linear OOA(3127, 178, F3, 4, 80) (dual of [(178, 4), 585, 81]-NRT-code) [i]
4No linear OOA(3127, 178, F3, 5, 80) (dual of [(178, 5), 763, 81]-NRT-code) [i]
5No digital (47, 127, 178)-net over F3 [i]Extracting Embedded Orthogonal Array
6No linear OA(397, 224, F3, 59) (dual of [224, 127, 60]-code) [i]Construction Y1 (Bound)