Information on Result #547772

There is no linear OA(3128, 176, F3, 81) (dual of [176, 48, 82]-code), because construction Y1 would yield
  1. OA(3127, 150, S3, 81), but
    • the linear programming bound shows that M ≥ 34 591649 218027 645930 654651 997419 100907 498551 201171 263936 373038 687154 245563 / 8 746966 630402 > 3127 [i]
  2. OA(348, 176, S3, 26), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3128, 176, F3, 2, 81) (dual of [(176, 2), 224, 82]-NRT-code) [i]Depth Reduction
2No linear OOA(3128, 176, F3, 3, 81) (dual of [(176, 3), 400, 82]-NRT-code) [i]
3No linear OOA(3128, 176, F3, 4, 81) (dual of [(176, 4), 576, 82]-NRT-code) [i]
4No linear OOA(3128, 176, F3, 5, 81) (dual of [(176, 5), 752, 82]-NRT-code) [i]
5No digital (47, 128, 176)-net over F3 [i]Extracting Embedded Orthogonal Array