Information on Result #547778

There is no linear OA(3132, 163, F3, 85) (dual of [163, 31, 86]-code), because construction Y1 would yield
  1. OA(3131, 147, S3, 85), but
    • the linear programming bound shows that M ≥ 2 959964 272368 355385 131019 565631 322230 864774 663367 805086 508948 978796 443201 / 9282 754000 > 3131 [i]
  2. OA(331, 163, S3, 16), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(3132, 163, F3, 2, 85) (dual of [(163, 2), 194, 86]-NRT-code) [i]Depth Reduction
2No linear OOA(3132, 163, F3, 3, 85) (dual of [(163, 3), 357, 86]-NRT-code) [i]
3No linear OOA(3132, 163, F3, 4, 85) (dual of [(163, 4), 520, 86]-NRT-code) [i]
4No linear OOA(3132, 163, F3, 5, 85) (dual of [(163, 5), 683, 86]-NRT-code) [i]
5No linear OA(3133, 201, F3, 85) (dual of [201, 68, 86]-code) [i]Construction Y1 (Bound)