Information on Result #547789

There is no linear OA(3139, 160, F3, 91) (dual of [160, 21, 92]-code), because construction Y1 would yield
  1. OA(3138, 150, S3, 91), but
    • the linear programming bound shows that M ≥ 13 106423 371120 876472 986931 421169 566720 811359 868949 528224 695915 065174 686944 / 17 599301 > 3138 [i]
  2. OA(321, 160, S3, 10), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3140, 161, F3, 92) (dual of [161, 21, 93]-code) [i]Truncation
2No linear OA(3141, 162, F3, 93) (dual of [162, 21, 94]-code) [i]
3No linear OOA(3140, 160, F3, 2, 92) (dual of [(160, 2), 180, 93]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3141, 160, F3, 2, 93) (dual of [(160, 2), 179, 94]-NRT-code) [i]
5No linear OOA(3139, 160, F3, 2, 91) (dual of [(160, 2), 181, 92]-NRT-code) [i]Depth Reduction
6No linear OOA(3139, 160, F3, 3, 91) (dual of [(160, 3), 341, 92]-NRT-code) [i]
7No linear OOA(3139, 160, F3, 4, 91) (dual of [(160, 4), 501, 92]-NRT-code) [i]
8No linear OOA(3139, 160, F3, 5, 91) (dual of [(160, 5), 661, 92]-NRT-code) [i]
9No digital (48, 139, 160)-net over F3 [i]Extracting Embedded Orthogonal Array
10No linear OA(3140, 182, F3, 91) (dual of [182, 42, 92]-code) [i]Construction Y1 (Bound)