Information on Result #547935

There is no linear OA(532, 66, F5, 25) (dual of [66, 34, 26]-code), because construction Y1 would yield
  1. linear OA(531, 39, F5, 25) (dual of [39, 8, 26]-code), but
  2. OA(534, 66, S5, 27), but
    • discarding factors would yield OA(534, 65, S5, 27), but
      • the linear programming bound shows that M ≥ 64 241548 253700 687835 401117 197195 381929 859807 132743 299007 415771 484375 / 105 626721 073484 056311 392841 841080 747283 817551 > 534 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(533, 67, F5, 26) (dual of [67, 34, 27]-code) [i]Truncation
2No linear OOA(533, 66, F5, 2, 26) (dual of [(66, 2), 99, 27]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(532, 66, F5, 2, 25) (dual of [(66, 2), 100, 26]-NRT-code) [i]Depth Reduction
4No linear OOA(532, 66, F5, 3, 25) (dual of [(66, 3), 166, 26]-NRT-code) [i]
5No digital (7, 32, 66)-net over F5 [i]Extracting Embedded Orthogonal Array