Information on Result #547949

There is no linear OA(5113, 222, F5, 86) (dual of [222, 109, 87]-code), because construction Y1 would yield
  1. OA(5112, 139, S5, 86), but
    • the linear programming bound shows that M ≥ 2 082589 264522 932824 279618 514424 429978 311367 037622 562595 373942 873067 107939 277775 585651 397705 078125 / 1 034045 105594 725224 > 5112 [i]
  2. OA(5109, 222, S5, 83), but
    • discarding factors would yield OA(5109, 147, S5, 83), but
      • the linear programming bound shows that M ≥ 97832 005097 623965 961965 091455 398251 491670 818930 622769 438002 739592 061328 226246 796901 932611 945085 227489 471435 546875 / 5 803319 642355 292721 815985 390811 721467 > 5109 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(5113, 222, F5, 2, 86) (dual of [(222, 2), 331, 87]-NRT-code) [i]Depth Reduction
2No linear OOA(5113, 222, F5, 3, 86) (dual of [(222, 3), 553, 87]-NRT-code) [i]
3No digital (27, 113, 222)-net over F5 [i]Extracting Embedded Orthogonal Array