Information on Result #547949
There is no linear OA(5113, 222, F5, 86) (dual of [222, 109, 87]-code), because construction Y1 would yield
- OA(5112, 139, S5, 86), but
- the linear programming bound shows that M ≥ 2 082589 264522 932824 279618 514424 429978 311367 037622 562595 373942 873067 107939 277775 585651 397705 078125 / 1 034045 105594 725224 > 5112 [i]
- OA(5109, 222, S5, 83), but
- discarding factors would yield OA(5109, 147, S5, 83), but
- the linear programming bound shows that M ≥ 97832 005097 623965 961965 091455 398251 491670 818930 622769 438002 739592 061328 226246 796901 932611 945085 227489 471435 546875 / 5 803319 642355 292721 815985 390811 721467 > 5109 [i]
- discarding factors would yield OA(5109, 147, S5, 83), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OOA(5113, 222, F5, 2, 86) (dual of [(222, 2), 331, 87]-NRT-code) | [i] | Depth Reduction | |
2 | No linear OOA(5113, 222, F5, 3, 86) (dual of [(222, 3), 553, 87]-NRT-code) | [i] | ||
3 | No digital (27, 113, 222)-net over F5 | [i] | Extracting Embedded Orthogonal Array |