Information on Result #547954

There is no linear OA(5119, 214, F5, 91) (dual of [214, 95, 92]-code), because construction Y1 would yield
  1. OA(5118, 142, S5, 91), but
    • the linear programming bound shows that M ≥ 227 290310 028755 622094 163273 225192 363202 339181 888847 417767 861303 072862 710905 610583 722591 400146 484375 / 5712 266942 976429 > 5118 [i]
  2. OA(595, 214, S5, 72), but
    • discarding factors would yield OA(595, 145, S5, 72), but
      • the linear programming bound shows that M ≥ 681 594308 011084 642541 521008 533375 736738 792368 662881 901785 086204 561152 741164 839513 298410 490771 406244 903118 931688 368320 465087 890625 / 251 826768 360176 313961 784872 463983 728554 549094 621216 187309 311959 > 595 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(5119, 214, F5, 2, 91) (dual of [(214, 2), 309, 92]-NRT-code) [i]Depth Reduction
2No linear OOA(5119, 214, F5, 3, 91) (dual of [(214, 3), 523, 92]-NRT-code) [i]
3No digital (28, 119, 214)-net over F5 [i]Extracting Embedded Orthogonal Array
4No linear OA(5108, 227, F5, 82) (dual of [227, 119, 83]-code) [i]Construction Y1 (Bound)