Information on Result #547966

There is no linear OA(5140, 239, F5, 109) (dual of [239, 99, 110]-code), because construction Y1 would yield
  1. linear OA(5139, 164, F5, 109) (dual of [164, 25, 110]-code), but
  2. OA(599, 239, S5, 75), but
    • discarding factors would yield OA(599, 147, S5, 75), but
      • the linear programming bound shows that M ≥ 10 465163 072971 841494 226679 044239 098519 996159 375872 949750 717770 995481 826038 130942 490580 153891 865933 246663 189493 119716 644287 109375 / 6623 020670 394833 160024 516013 529216 797975 034523 571498 254336 > 599 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(5140, 239, F5, 2, 109) (dual of [(239, 2), 338, 110]-NRT-code) [i]Depth Reduction
2No linear OOA(5140, 239, F5, 3, 109) (dual of [(239, 3), 577, 110]-NRT-code) [i]
3No digital (31, 140, 239)-net over F5 [i]Extracting Embedded Orthogonal Array
4No linear OA(5112, 252, F5, 85) (dual of [252, 140, 86]-code) [i]Construction Y1 (Bound)