Information on Result #547999

There is no linear OA(8120, 260, F8, 102) (dual of [260, 140, 103]-code), because construction Y1 would yield
  1. OA(8119, 140, S8, 102), but
    • 1 times truncation [i] would yield OA(8118, 139, S8, 101), but
      • the linear programming bound shows that M ≥ 86 122166 823419 594361 457243 405645 198855 851117 431259 906299 815036 071096 967116 729798 784443 354837 373006 252286 343831 710016 130244 411392 / 2218 870601 774953 928217 > 8118 [i]
  2. linear OA(8140, 260, F8, 120) (dual of [260, 120, 121]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(8120, 260, F8, 2, 102) (dual of [(260, 2), 400, 103]-NRT-code) [i]Depth Reduction
2No linear OOA(8120, 260, F8, 3, 102) (dual of [(260, 3), 660, 103]-NRT-code) [i]
3No digital (18, 120, 260)-net over F8 [i]Extracting Embedded Orthogonal Array