Information on Result #548027

There is no linear OA(9120, 254, F9, 104) (dual of [254, 134, 105]-code), because construction Y1 would yield
  1. OA(9119, 137, S9, 104), but
    • the linear programming bound shows that M ≥ 1 649743 959172 993378 210906 967412 042627 075594 345401 873516 549288 005769 316925 057707 239007 022709 124331 368314 618099 062045 429872 721572 150117 / 4 003686 893566 937500 > 9119 [i]
  2. linear OA(9134, 254, F9, 117) (dual of [254, 120, 118]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(9121, 255, F9, 105) (dual of [255, 134, 106]-code) [i]Truncation
2No linear OOA(9121, 254, F9, 2, 105) (dual of [(254, 2), 387, 106]-NRT-code) [i]m-Reduction for OOAs
3No linear OOA(9120, 254, F9, 2, 104) (dual of [(254, 2), 388, 105]-NRT-code) [i]Depth Reduction
4No linear OOA(9120, 254, F9, 3, 104) (dual of [(254, 3), 642, 105]-NRT-code) [i]
5No digital (16, 120, 254)-net over F9 [i]Extracting Embedded Orthogonal Array