Information on Result #548044

There is no linear OA(16103, 162, F16, 96) (dual of [162, 59, 97]-code), because construction Y1 would yield
  1. linear OA(16102, 107, F16, 96) (dual of [107, 5, 97]-code), but
  2. OA(1659, 162, S16, 55), but
    • discarding factors would yield OA(1659, 158, S16, 55), but
      • the linear programming bound shows that M ≥ 1 751872 128079 872472 547941 838539 530895 802398 111785 402312 961189 355293 686055 441948 303058 733784 687094 938824 867840 / 15 835355 243697 262421 313219 417467 218513 > 1659 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(16103, 162, F16, 2, 96) (dual of [(162, 2), 221, 97]-NRT-code) [i]Depth Reduction
2No digital (7, 103, 162)-net over F16 [i]Extracting Embedded Orthogonal Array