Information on Result #548459

There is no linear OA(3157, 168, F3, 105) (dual of [168, 11, 106]-code), because residual code would yield linear OA(352, 62, F3, 35) (dual of [62, 10, 36]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3158, 169, F3, 106) (dual of [169, 11, 107]-code) [i]Truncation
2No linear OA(3159, 170, F3, 107) (dual of [170, 11, 108]-code) [i]
3No linear OOA(3158, 168, F3, 2, 106) (dual of [(168, 2), 178, 107]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3159, 168, F3, 2, 107) (dual of [(168, 2), 177, 108]-NRT-code) [i]
5No linear OOA(3157, 168, F3, 2, 105) (dual of [(168, 2), 179, 106]-NRT-code) [i]Depth Reduction
6No linear OOA(3157, 168, F3, 3, 105) (dual of [(168, 3), 347, 106]-NRT-code) [i]
7No linear OOA(3157, 168, F3, 4, 105) (dual of [(168, 4), 515, 106]-NRT-code) [i]
8No linear OOA(3157, 168, F3, 5, 105) (dual of [(168, 5), 683, 106]-NRT-code) [i]
9No digital (52, 157, 168)-net over F3 [i]Extracting Embedded Orthogonal Array