Information on Result #548584

There is no linear OA(333, 67, F3, 21) (dual of [67, 34, 22]-code), because construction Y1 would yield
  1. linear OA(332, 45, F3, 21) (dual of [45, 13, 22]-code), but
  2. OA(334, 67, S3, 22), but
    • discarding factors would yield OA(334, 64, S3, 22), but
      • the linear programming bound shows that M ≥ 14 111105 234476 582146 780186 612485 543683 142605 088372 524627 579947 507340 583313 / 837 608500 983525 185318 819414 283441 298949 343873 086193 807233 > 334 [i]

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OOA(333, 67, F3, 2, 21) (dual of [(67, 2), 101, 22]-NRT-code) [i]Depth Reduction
2No linear OOA(333, 67, F3, 3, 21) (dual of [(67, 3), 168, 22]-NRT-code) [i]
3No linear OOA(333, 67, F3, 4, 21) (dual of [(67, 4), 235, 22]-NRT-code) [i]
4No linear OOA(333, 67, F3, 5, 21) (dual of [(67, 5), 302, 22]-NRT-code) [i]
5No digital (12, 33, 67)-net over F3 [i]Extracting Embedded Orthogonal Array