Information on Result #57751

There is no OA(813, 83, S81, 3), because bound for OAs with index unity

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(814, 84, S81, 4) [i]Truncation
2No OA(815, 85, S81, 5) [i]
3No OA(816, 86, S81, 6) [i]
4No OA(817, 87, S81, 7) [i]
5No OA(818, 88, S81, 8) [i]
6No OA(819, 89, S81, 9) [i]
7No OA(8110, 90, S81, 10) [i]
8No OA(8111, 91, S81, 11) [i]
9No OA(8112, 92, S81, 12) [i]
10No OA(8113, 93, S81, 13) [i]
11No OA(8114, 94, S81, 14) [i]
12No OA(8115, 95, S81, 15) [i]
13No OA(8116, 96, S81, 16) [i]
14No OA(8117, 97, S81, 17) [i]
15No OA(8118, 98, S81, 18) [i]
16No OA(8119, 99, S81, 19) [i]
17No OA(8120, 100, S81, 20) [i]
18No OA(8121, 101, S81, 21) [i]
19No OA(8122, 102, S81, 22) [i]
20No OA(8123, 103, S81, 23) [i]
21No OA(8124, 104, S81, 24) [i]
22No OA(8125, 105, S81, 25) [i]
23No OA(8126, 106, S81, 26) [i]
24No OA(8127, 107, S81, 27) [i]
25No OA(8128, 108, S81, 28) [i]
26No OA(8129, 109, S81, 29) [i]
27No OA(8130, 110, S81, 30) [i]
28No OA(8131, 111, S81, 31) [i]
29No OA(8132, 112, S81, 32) [i]
30No OA(8133, 113, S81, 33) [i]
31No OA(8134, 114, S81, 34) [i]
32No OA(8135, 115, S81, 35) [i]
33No OA(8136, 116, S81, 36) [i]
34No OA(8137, 117, S81, 37) [i]
35No OA(8138, 118, S81, 38) [i]
36No OA(8139, 119, S81, 39) [i]
37No OA(8140, 120, S81, 40) [i]
38No OA(8141, 121, S81, 41) [i]
39No OA(8142, 122, S81, 42) [i]
40No OA(8143, 123, S81, 43) [i]
41No OA(8144, 124, S81, 44) [i]
42No OA(8145, 125, S81, 45) [i]
43No OA(8146, 126, S81, 46) [i]
44No OA(8147, 127, S81, 47) [i]
45No OA(8148, 128, S81, 48) [i]
46No OA(8149, 129, S81, 49) [i]
47No OA(8150, 130, S81, 50) [i]
48No OA(8151, 131, S81, 51) [i]
49No OA(8152, 132, S81, 52) [i]
50No OA(8153, 133, S81, 53) [i]
51No OA(8154, 134, S81, 54) [i]
52No OA(8155, 135, S81, 55) [i]
53No OA(8156, 136, S81, 56) [i]
54No OA(8157, 137, S81, 57) [i]
55No OA(8158, 138, S81, 58) [i]
56No OA(8159, 139, S81, 59) [i]
57No OA(8160, 140, S81, 60) [i]
58No OA(8161, 141, S81, 61) [i]
59No OA(8162, 142, S81, 62) [i]
60No OA(8163, 143, S81, 63) [i]
61No OA(8164, 144, S81, 64) [i]
62No OA(8165, 145, S81, 65) [i]
63No OA(8166, 146, S81, 66) [i]
64No OA(8167, 147, S81, 67) [i]
65No OA(8168, 148, S81, 68) [i]
66No OA(8169, 149, S81, 69) [i]
67No OA(8170, 150, S81, 70) [i]
68No OA(8171, 151, S81, 71) [i]
69No OA(8172, 152, S81, 72) [i]
70No OA(8173, 153, S81, 73) [i]
71No OA(8174, 154, S81, 74) [i]
72No OA(8175, 155, S81, 75) [i]
73No OA(8176, 156, S81, 76) [i]
74No OA(8177, 157, S81, 77) [i]
75No OA(8178, 158, S81, 78) [i]
76No OA(8179, 159, S81, 79) [i]
77No OA(8180, 160, S81, 80) [i]
78No OOA(813, 83, S81, 2, 3) [i]Depth Reduction
79No OOA(813, 83, S81, 3, 3) [i]
80No OOA(813, 83, S81, 4, 3) [i]
81No (0, 3, 83)-net in base 81 [i]Extracting Embedded Orthogonal Array
82No 83-cap in AG(2,81) [i]Every Affine Cap Is Also a Projective Cap
83No linear OA(8180, 83, F81, 80) (dual of [83, 3, 81]-code or 83-arc in PG(79,81)) [i]Dual of MDS Code Is Again an MDS Code