Information on Result #57944

There is no OA(252, 88, S2, 24), because the linear programming bound shows that M ≥ 2 587715 521886 450011 810360 721408 / 536 605819 945767 > 252

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(253, 89, S2, 25) [i]Truncation
2No OOA(253, 88, S2, 2, 25) [i]m-Reduction for OOAs
3No OOA(252, 88, S2, 2, 24) [i]Depth Reduction
4No OOA(252, 88, S2, 3, 24) [i]
5No OOA(252, 88, S2, 4, 24) [i]
6No OOA(252, 88, S2, 5, 24) [i]
7No OOA(252, 88, S2, 6, 24) [i]
8No OOA(252, 88, S2, 7, 24) [i]
9No OOA(252, 88, S2, 8, 24) [i]
10No (28, 52, 88)-net in base 2 [i]Extracting Embedded Orthogonal Array
11Linear OA(250, 79, F2, 18) (dual of [79, 29, 19]-code) [i]Construction Y1