Information on Result #58016
There is no OA(258, 67, S2, 30), because the linear programming bound shows that M ≥ 10 376293 541461 622784 / 35 > 258
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(259, 68, S2, 31) | [i] | Truncation | |
2 | No OOA(259, 67, S2, 2, 31) | [i] | m-Reduction for OOAs | |
3 | No OOA(260, 67, S2, 2, 32) | [i] | ||
4 | No OOA(261, 67, S2, 2, 33) | [i] | ||
5 | No OOA(258, 67, S2, 2, 30) | [i] | Depth Reduction | |
6 | No OOA(258, 67, S2, 3, 30) | [i] | ||
7 | No OOA(258, 67, S2, 4, 30) | [i] | ||
8 | No OOA(258, 67, S2, 5, 30) | [i] | ||
9 | No OOA(258, 67, S2, 6, 30) | [i] | ||
10 | No OOA(258, 67, S2, 7, 30) | [i] | ||
11 | No OOA(258, 67, S2, 8, 30) | [i] | ||
12 | No (28, 58, 67)-net in base 2 | [i] | Extracting Embedded Orthogonal Array | |
13 | No linear OA(2118, 128, F2, 60) (dual of [128, 10, 61]-code) | [i] | Residual Code |