Information on Result #58039

There is no OA(270, 108, S2, 32), because the linear programming bound shows that M ≥ 4 297708 243581 570312 211812 843520 / 3462 071301 > 270

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(271, 109, S2, 33) [i]Truncation
2No OOA(271, 108, S2, 2, 33) [i]m-Reduction for OOAs
3No OOA(270, 108, S2, 2, 32) [i]Depth Reduction
4No OOA(270, 108, S2, 3, 32) [i]
5No OOA(270, 108, S2, 4, 32) [i]
6No OOA(270, 108, S2, 5, 32) [i]
7No OOA(270, 108, S2, 6, 32) [i]
8No OOA(270, 108, S2, 7, 32) [i]
9No OOA(270, 108, S2, 8, 32) [i]
10No (38, 70, 108)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2134, 173, F2, 64) (dual of [173, 39, 65]-code) [i]Residual Code