Information on Result #58089

There is no OA(282, 116, S2, 38), because the linear programming bound shows that M ≥ 1 062617 333342 845814 746138 360785 403904 / 188306 971237 > 282

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(283, 117, S2, 39) [i]Truncation
2No OOA(283, 116, S2, 2, 39) [i]m-Reduction for OOAs
3No OOA(282, 116, S2, 2, 38) [i]Depth Reduction
4No OOA(282, 116, S2, 3, 38) [i]
5No OOA(282, 116, S2, 4, 38) [i]
6No OOA(282, 116, S2, 5, 38) [i]
7No OOA(282, 116, S2, 6, 38) [i]
8No OOA(282, 116, S2, 7, 38) [i]
9No OOA(282, 116, S2, 8, 38) [i]
10No (44, 82, 116)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2158, 193, F2, 76) (dual of [193, 35, 77]-code) [i]Residual Code