Information on Result #58148

There is no OA(290, 100, S2, 46), because the linear programming bound shows that M ≥ 1 861861 819085 211933 448282 832896 / 1305 > 290

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(291, 101, S2, 47) [i]Truncation
2No OOA(291, 100, S2, 2, 47) [i]m-Reduction for OOAs
3No OOA(292, 100, S2, 2, 48) [i]
4No OOA(293, 100, S2, 2, 49) [i]
5No OOA(290, 100, S2, 2, 46) [i]Depth Reduction
6No OOA(290, 100, S2, 3, 46) [i]
7No OOA(290, 100, S2, 4, 46) [i]
8No OOA(290, 100, S2, 5, 46) [i]
9No OOA(290, 100, S2, 6, 46) [i]
10No OOA(290, 100, S2, 7, 46) [i]
11No OOA(290, 100, S2, 8, 46) [i]
12No (44, 90, 100)-net in base 2 [i]Extracting Embedded Orthogonal Array
13No linear OA(2182, 193, F2, 92) (dual of [193, 11, 93]-code) [i]Residual Code