Information on Result #58170
There is no OA(2100, 121, S2, 48), because the linear programming bound shows that M ≥ 59 423241 397501 834794 717265 239759 388672 / 45 664125 > 2100
Mode: Bound.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No OA(2101, 122, S2, 49) | [i] | Truncation | |
2 | No OOA(2101, 121, S2, 2, 49) | [i] | m-Reduction for OOAs | |
3 | No OOA(2100, 121, S2, 2, 48) | [i] | Depth Reduction | |
4 | No OOA(2100, 121, S2, 3, 48) | [i] | ||
5 | No OOA(2100, 121, S2, 4, 48) | [i] | ||
6 | No OOA(2100, 121, S2, 5, 48) | [i] | ||
7 | No OOA(2100, 121, S2, 6, 48) | [i] | ||
8 | No OOA(2100, 121, S2, 7, 48) | [i] | ||
9 | No OOA(2100, 121, S2, 8, 48) | [i] | ||
10 | No (52, 100, 121)-net in base 2 | [i] | Extracting Embedded Orthogonal Array | |
11 | No linear OA(2196, 218, F2, 96) (dual of [218, 22, 97]-code) | [i] | Residual Code | |
12 | Linear OA(227, 80, F2, 8) (dual of [80, 53, 9]-code) | [i] | Construction Y1 |