Information on Result #58174

There is no OA(2104, 140, S2, 48), because the linear programming bound shows that M ≥ 906615 640616 170781 657520 759485 197602 258944 / 38102 739675 > 2104

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2105, 141, S2, 49) [i]Truncation
2No OOA(2105, 140, S2, 2, 49) [i]m-Reduction for OOAs
3No OOA(2104, 140, S2, 2, 48) [i]Depth Reduction
4No OOA(2104, 140, S2, 3, 48) [i]
5No OOA(2104, 140, S2, 4, 48) [i]
6No OOA(2104, 140, S2, 5, 48) [i]
7No OOA(2104, 140, S2, 6, 48) [i]
8No OOA(2104, 140, S2, 7, 48) [i]
9No OOA(2104, 140, S2, 8, 48) [i]
10No (56, 104, 140)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2200, 237, F2, 96) (dual of [237, 37, 97]-code) [i]Residual Code