Information on Result #58230

There is no OA(2114, 130, S2, 56), because the linear programming bound shows that M ≥ 76811 433578 425041 089555 846688 890131 841024 / 3 537275 > 2114

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2115, 131, S2, 57) [i]Truncation
2No OOA(2115, 130, S2, 2, 57) [i]m-Reduction for OOAs
3No OOA(2114, 130, S2, 2, 56) [i]Depth Reduction
4No OOA(2114, 130, S2, 3, 56) [i]
5No OOA(2114, 130, S2, 4, 56) [i]
6No OOA(2114, 130, S2, 5, 56) [i]
7No OOA(2114, 130, S2, 6, 56) [i]
8No OOA(2114, 130, S2, 7, 56) [i]
9No OOA(2114, 130, S2, 8, 56) [i]
10No (58, 114, 130)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2226, 243, F2, 112) (dual of [243, 17, 113]-code) [i]Residual Code