Information on Result #58235

There is no OA(2119, 146, S2, 56), because the linear programming bound shows that M ≥ 5165 551323 791927 774620 548045 364260 917630 468096 / 7704 797749 > 2119

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2120, 147, S2, 57) [i]Truncation
2No OOA(2120, 146, S2, 2, 57) [i]m-Reduction for OOAs
3No OOA(2119, 146, S2, 2, 56) [i]Depth Reduction
4No OOA(2119, 146, S2, 3, 56) [i]
5No OOA(2119, 146, S2, 4, 56) [i]
6No OOA(2119, 146, S2, 5, 56) [i]
7No OOA(2119, 146, S2, 6, 56) [i]
8No OOA(2119, 146, S2, 7, 56) [i]
9No OOA(2119, 146, S2, 8, 56) [i]
10No (63, 119, 146)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2120, 162, F2, 56) (dual of [162, 42, 57]-code) [i]Construction Y1 (Bound)