Information on Result #58248

There is no OA(2122, 145, S2, 58), because the linear programming bound shows that M ≥ 5 189986 660278 153444 743389 512549 328761 126912 / 966875 > 2122

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2123, 146, S2, 59) [i]Truncation
2No OOA(2123, 145, S2, 2, 59) [i]m-Reduction for OOAs
3No OOA(2125, 145, S2, 2, 61) [i]
4No OOA(2122, 145, S2, 2, 58) [i]Depth Reduction
5No OOA(2122, 145, S2, 3, 58) [i]
6No OOA(2122, 145, S2, 4, 58) [i]
7No OOA(2122, 145, S2, 5, 58) [i]
8No OOA(2122, 145, S2, 6, 58) [i]
9No OOA(2122, 145, S2, 7, 58) [i]
10No OOA(2122, 145, S2, 8, 58) [i]
11No (64, 122, 145)-net in base 2 [i]Extracting Embedded Orthogonal Array
12No linear OA(2238, 262, F2, 116) (dual of [262, 24, 117]-code) [i]Residual Code