Information on Result #58249

There is no OA(2123, 150, S2, 58), because the linear programming bound shows that M ≥ 36000 467012 365704 432940 148948 904738 978722 217984 / 3201 323125 > 2123

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2124, 151, S2, 59) [i]Truncation
2No OOA(2124, 150, S2, 2, 59) [i]m-Reduction for OOAs
3No OOA(2123, 150, S2, 2, 58) [i]Depth Reduction
4No OOA(2123, 150, S2, 3, 58) [i]
5No OOA(2123, 150, S2, 4, 58) [i]
6No OOA(2123, 150, S2, 5, 58) [i]
7No OOA(2123, 150, S2, 6, 58) [i]
8No OOA(2123, 150, S2, 7, 58) [i]
9No OOA(2123, 150, S2, 8, 58) [i]
10No (65, 123, 150)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2239, 267, F2, 116) (dual of [267, 28, 117]-code) [i]Residual Code
12No linear OA(2124, 166, F2, 58) (dual of [166, 42, 59]-code) [i]Construction Y1 (Bound)