Information on Result #58258

There is no OA(2122, 138, S2, 60), because the linear programming bound shows that M ≥ 9 124501 527801 504428 538658 410979 148706 086912 / 1 627593 > 2122

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2123, 139, S2, 61) [i]Truncation
2No OOA(2123, 138, S2, 2, 61) [i]m-Reduction for OOAs
3No OOA(2122, 138, S2, 2, 60) [i]Depth Reduction
4No OOA(2122, 138, S2, 3, 60) [i]
5No OOA(2122, 138, S2, 4, 60) [i]
6No OOA(2122, 138, S2, 5, 60) [i]
7No OOA(2122, 138, S2, 6, 60) [i]
8No OOA(2122, 138, S2, 7, 60) [i]
9No OOA(2122, 138, S2, 8, 60) [i]
10No (62, 122, 138)-net in base 2 [i]Extracting Embedded Orthogonal Array
11No linear OA(2242, 259, F2, 120) (dual of [259, 17, 121]-code) [i]Residual Code