Information on Result #58356

There is no OA(2209, 233, S2, 100), because the linear programming bound shows that M ≥ 111208 305629 913029 352387 666381 568405 142700 756211 644253 796994 831924 330496 / 125 695773 > 2209

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2210, 234, S2, 101) [i]Truncation
2No OOA(2210, 233, S2, 2, 101) [i]m-Reduction for OOAs
3No OOA(2209, 233, S2, 2, 100) [i]Depth Reduction
4No OOA(2209, 233, S2, 3, 100) [i]
5No OOA(2209, 233, S2, 4, 100) [i]
6No OOA(2209, 233, S2, 5, 100) [i]
7No OOA(2209, 233, S2, 6, 100) [i]
8No OOA(2209, 233, S2, 7, 100) [i]
9No OOA(2209, 233, S2, 8, 100) [i]
10No (109, 209, 233)-net in base 2 [i]Extracting Embedded Orthogonal Array