Information on Result #58392

There is no OA(2217, 248, S2, 102), because the linear programming bound shows that M ≥ 83804 534224 227728 877506 239789 389107 220062 509840 509232 170262 899869 889863 876608 / 310597 170975 > 2217

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2218, 249, S2, 103) [i]Truncation
2No OOA(2218, 248, S2, 2, 103) [i]m-Reduction for OOAs
3No OOA(2217, 248, S2, 2, 102) [i]Depth Reduction
4No OOA(2217, 248, S2, 3, 102) [i]
5No OOA(2217, 248, S2, 4, 102) [i]
6No OOA(2217, 248, S2, 5, 102) [i]
7No OOA(2217, 248, S2, 6, 102) [i]
8No OOA(2217, 248, S2, 7, 102) [i]
9No OOA(2217, 248, S2, 8, 102) [i]
10No (115, 217, 248)-net in base 2 [i]Extracting Embedded Orthogonal Array