Information on Result #58454

There is no OA(2225, 256, S2, 106), because the linear programming bound shows that M ≥ 4 533712 341462 452600 463527 949755 696668 157794 361414 843709 255199 826856 399742 173184 / 59446 678005 > 2225

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OA(2226, 257, S2, 107) [i]Truncation
2No OOA(2226, 256, S2, 2, 107) [i]m-Reduction for OOAs
3No OOA(2225, 256, S2, 2, 106) [i]Depth Reduction
4No OOA(2225, 256, S2, 3, 106) [i]
5No OOA(2225, 256, S2, 4, 106) [i]
6No OOA(2225, 256, S2, 5, 106) [i]
7No OOA(2225, 256, S2, 6, 106) [i]
8No OOA(2225, 256, S2, 7, 106) [i]
9No OOA(2225, 256, S2, 8, 106) [i]
10No (119, 225, 256)-net in base 2 [i]Extracting Embedded Orthogonal Array