Information on Result #59163

There is no OA(3102, 145, S3, 63), because the linear programming bound shows that M ≥ 776506 070804 940797 482287 435756 684689 957091 430666 641508 706084 490920 965603 695219 / 159956 166343 221247 242988 544800 > 3102

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OOA(3102, 145, S3, 2, 63) [i]Depth Reduction
2No OOA(3102, 145, S3, 3, 63) [i]
3No OOA(3102, 145, S3, 4, 63) [i]
4No OOA(3102, 145, S3, 5, 63) [i]
5No (39, 102, 145)-net in base 3 [i]Extracting Embedded Orthogonal Array
6No linear OA(3103, 214, F3, 63) (dual of [214, 111, 64]-code) [i]Construction Y1 (Bound)
7No linear OA(3103, 212, F3, 63) (dual of [212, 109, 64]-code) [i]