Information on Result #59347

There is no OA(3133, 150, S3, 86), because the linear programming bound shows that M ≥ 10206 967808 467913 747808 389212 583004 511164 705253 854573 732746 285224 754829 / 2 832691 > 3133

Mode: Bound.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No OOA(3135, 150, S3, 2, 88) [i]m-Reduction for OOAs
2No OOA(3133, 150, S3, 2, 86) [i]Depth Reduction
3No OOA(3133, 150, S3, 3, 86) [i]
4No OOA(3133, 150, S3, 4, 86) [i]
5No OOA(3133, 150, S3, 5, 86) [i]
6No (47, 133, 150)-net in base 3 [i]Extracting Embedded Orthogonal Array
7No linear OA(3134, 166, F3, 86) (dual of [166, 32, 87]-code) [i]Construction Y1 (Bound)