Information on Result #600245
Function Field F/F25 with g(F) = 41 and N(F) ≥ 288, using a function field by GarcÃa and Quoos
Mode: Constructive and linear.
Optimality
Compare with manYPoints (online database of function field parameters).
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Digital (41, 287)-sequence over F25 | [i] | Niederreiter–Xing Sequence Construction II/III | |
2 | Linear OA(2596, 288, F25, 55) (dual of [288, 192, 56]-code) | [i] | Extended Algebraic-Geometric Codes | |
3 | Linear OA(2597, 288, F25, 56) (dual of [288, 191, 57]-code) | [i] | ||
4 | Linear OA(2598, 288, F25, 57) (dual of [288, 190, 58]-code) | [i] | ||
5 | Linear OA(2599, 288, F25, 58) (dual of [288, 189, 59]-code) | [i] | ||
6 | Linear OA(25100, 288, F25, 59) (dual of [288, 188, 60]-code) | [i] | ||
7 | Linear OA(25101, 288, F25, 60) (dual of [288, 187, 61]-code) | [i] | ||
8 | Linear OA(25102, 288, F25, 61) (dual of [288, 186, 62]-code) | [i] | ||
9 | Linear OA(25103, 288, F25, 62) (dual of [288, 185, 63]-code) | [i] | ||
10 | Linear OA(25104, 288, F25, 63) (dual of [288, 184, 64]-code) | [i] | ||
11 | Linear OA(25105, 288, F25, 64) (dual of [288, 183, 65]-code) | [i] | ||
12 | Linear OA(25106, 288, F25, 65) (dual of [288, 182, 66]-code) | [i] | ||
13 | Linear OA(25107, 288, F25, 66) (dual of [288, 181, 67]-code) | [i] | ||
14 | Linear OA(25108, 288, F25, 67) (dual of [288, 180, 68]-code) | [i] | ||
15 | Linear OA(25109, 288, F25, 68) (dual of [288, 179, 69]-code) | [i] | ||
16 | Linear OA(25110, 288, F25, 69) (dual of [288, 178, 70]-code) | [i] | ||
17 | Linear OOA(2587, 288, F25, 2, 46) (dual of [(288, 2), 489, 47]-NRT-code) | [i] | Extended Algebraic-Geometric NRT-Codes | |
18 | Linear OOA(2588, 288, F25, 2, 47) (dual of [(288, 2), 488, 48]-NRT-code) | [i] | ||
19 | Linear OOA(2589, 288, F25, 2, 48) (dual of [(288, 2), 487, 49]-NRT-code) | [i] | ||
20 | Linear OOA(2590, 288, F25, 2, 49) (dual of [(288, 2), 486, 50]-NRT-code) | [i] | ||
21 | Linear OOA(2591, 288, F25, 2, 50) (dual of [(288, 2), 485, 51]-NRT-code) | [i] | ||
22 | Linear OOA(2592, 288, F25, 2, 51) (dual of [(288, 2), 484, 52]-NRT-code) | [i] | ||
23 | Linear OOA(2593, 288, F25, 2, 52) (dual of [(288, 2), 483, 53]-NRT-code) | [i] | ||
24 | Linear OOA(2594, 288, F25, 2, 53) (dual of [(288, 2), 482, 54]-NRT-code) | [i] | ||
25 | Linear OOA(2595, 288, F25, 2, 54) (dual of [(288, 2), 481, 55]-NRT-code) | [i] | ||
26 | Linear OOA(2596, 288, F25, 2, 55) (dual of [(288, 2), 480, 56]-NRT-code) | [i] | ||
27 | Linear OOA(2597, 288, F25, 2, 56) (dual of [(288, 2), 479, 57]-NRT-code) | [i] | ||
28 | Linear OOA(2598, 288, F25, 2, 57) (dual of [(288, 2), 478, 58]-NRT-code) | [i] | ||
29 | Linear OOA(2599, 288, F25, 2, 58) (dual of [(288, 2), 477, 59]-NRT-code) | [i] | ||
30 | Linear OOA(25100, 288, F25, 2, 59) (dual of [(288, 2), 476, 60]-NRT-code) | [i] | ||
31 | Linear OOA(25101, 288, F25, 2, 60) (dual of [(288, 2), 475, 61]-NRT-code) | [i] | ||
32 | Linear OOA(25102, 288, F25, 2, 61) (dual of [(288, 2), 474, 62]-NRT-code) | [i] | ||
33 | Linear OOA(25103, 288, F25, 2, 62) (dual of [(288, 2), 473, 63]-NRT-code) | [i] | ||
34 | Linear OOA(25104, 288, F25, 2, 63) (dual of [(288, 2), 472, 64]-NRT-code) | [i] | ||
35 | Linear OOA(25105, 288, F25, 2, 64) (dual of [(288, 2), 471, 65]-NRT-code) | [i] | ||
36 | Linear OOA(25106, 288, F25, 2, 65) (dual of [(288, 2), 470, 66]-NRT-code) | [i] | ||
37 | Linear OOA(25107, 288, F25, 2, 66) (dual of [(288, 2), 469, 67]-NRT-code) | [i] | ||
38 | Linear OOA(25108, 288, F25, 2, 67) (dual of [(288, 2), 468, 68]-NRT-code) | [i] | ||
39 | Linear OOA(25109, 288, F25, 2, 68) (dual of [(288, 2), 467, 69]-NRT-code) | [i] | ||
40 | Linear OOA(25110, 288, F25, 2, 69) (dual of [(288, 2), 466, 70]-NRT-code) | [i] | ||
41 | Linear OA(25109, 287, F25, 68) (dual of [287, 178, 69]-code) | [i] | Algebraic-Geometric Codes | |
42 | Linear OA(25107, 287, F25, 66) (dual of [287, 180, 67]-code) | [i] | ||
43 | Linear OA(25108, 287, F25, 67) (dual of [287, 179, 68]-code) | [i] | ||
44 | Linear OA(25106, 287, F25, 65) (dual of [287, 181, 66]-code) | [i] | ||
45 | Linear OA(25105, 287, F25, 64) (dual of [287, 182, 65]-code) | [i] | ||
46 | Linear OA(25104, 287, F25, 63) (dual of [287, 183, 64]-code) | [i] | ||
47 | Linear OA(25103, 287, F25, 62) (dual of [287, 184, 63]-code) | [i] | ||
48 | Linear OA(25102, 287, F25, 61) (dual of [287, 185, 62]-code) | [i] | ||
49 | Linear OA(25101, 287, F25, 60) (dual of [287, 186, 61]-code) | [i] | ||
50 | Linear OA(25100, 287, F25, 59) (dual of [287, 187, 60]-code) | [i] | ||
51 | Linear OA(2599, 287, F25, 58) (dual of [287, 188, 59]-code) | [i] | ||
52 | Linear OA(2598, 287, F25, 57) (dual of [287, 189, 58]-code) | [i] | ||
53 | Linear OA(2597, 287, F25, 56) (dual of [287, 190, 57]-code) | [i] | ||
54 | Linear OA(2596, 287, F25, 55) (dual of [287, 191, 56]-code) | [i] | ||
55 | Linear OA(2595, 287, F25, 54) (dual of [287, 192, 55]-code) | [i] | ||
56 | Linear OOA(25107, 287, F25, 2, 66) (dual of [(287, 2), 467, 67]-NRT-code) | [i] | Algebraic-Geometric NRT-Codes | |
57 | Linear OOA(25103, 287, F25, 2, 62) (dual of [(287, 2), 471, 63]-NRT-code) | [i] | ||
58 | Linear OOA(25106, 287, F25, 2, 65) (dual of [(287, 2), 468, 66]-NRT-code) | [i] | ||
59 | Linear OOA(25102, 287, F25, 2, 61) (dual of [(287, 2), 472, 62]-NRT-code) | [i] | ||
60 | Linear OOA(25105, 287, F25, 2, 64) (dual of [(287, 2), 469, 65]-NRT-code) | [i] | ||
61 | Linear OOA(25101, 287, F25, 2, 60) (dual of [(287, 2), 473, 61]-NRT-code) | [i] | ||
62 | Linear OOA(25104, 287, F25, 2, 63) (dual of [(287, 2), 470, 64]-NRT-code) | [i] | ||
63 | Linear OOA(25100, 287, F25, 2, 59) (dual of [(287, 2), 474, 60]-NRT-code) | [i] | ||
64 | Linear OOA(2599, 287, F25, 2, 58) (dual of [(287, 2), 475, 59]-NRT-code) | [i] | ||
65 | Linear OOA(2598, 287, F25, 2, 57) (dual of [(287, 2), 476, 58]-NRT-code) | [i] | ||
66 | Linear OOA(2597, 287, F25, 2, 56) (dual of [(287, 2), 477, 57]-NRT-code) | [i] | ||
67 | Linear OOA(2596, 287, F25, 2, 55) (dual of [(287, 2), 478, 56]-NRT-code) | [i] | ||
68 | Linear OOA(2595, 287, F25, 2, 54) (dual of [(287, 2), 479, 55]-NRT-code) | [i] | ||
69 | Linear OOA(2594, 287, F25, 2, 53) (dual of [(287, 2), 480, 54]-NRT-code) | [i] | ||
70 | Linear OOA(2593, 287, F25, 2, 52) (dual of [(287, 2), 481, 53]-NRT-code) | [i] | ||
71 | Linear OOA(2592, 287, F25, 2, 51) (dual of [(287, 2), 482, 52]-NRT-code) | [i] | ||
72 | Linear OOA(2591, 287, F25, 2, 50) (dual of [(287, 2), 483, 51]-NRT-code) | [i] |