Information on Result #600245

Function Field F/F25 with g(F) = 41 and N(F) ≥ 288, using a function field by García and Quoos

Mode: Constructive and linear.

Optimality

Compare with manYPoints (online database of function field parameters).

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Digital (41, 287)-sequence over F25 [i]Niederreiter–Xing Sequence Construction II/III
2Linear OA(2596, 288, F25, 55) (dual of [288, 192, 56]-code) [i]Extended Algebraic-Geometric Codes
3Linear OA(2597, 288, F25, 56) (dual of [288, 191, 57]-code) [i]
4Linear OA(2598, 288, F25, 57) (dual of [288, 190, 58]-code) [i]
5Linear OA(2599, 288, F25, 58) (dual of [288, 189, 59]-code) [i]
6Linear OA(25100, 288, F25, 59) (dual of [288, 188, 60]-code) [i]
7Linear OA(25101, 288, F25, 60) (dual of [288, 187, 61]-code) [i]
8Linear OA(25102, 288, F25, 61) (dual of [288, 186, 62]-code) [i]
9Linear OA(25103, 288, F25, 62) (dual of [288, 185, 63]-code) [i]
10Linear OA(25104, 288, F25, 63) (dual of [288, 184, 64]-code) [i]
11Linear OA(25105, 288, F25, 64) (dual of [288, 183, 65]-code) [i]
12Linear OA(25106, 288, F25, 65) (dual of [288, 182, 66]-code) [i]
13Linear OA(25107, 288, F25, 66) (dual of [288, 181, 67]-code) [i]
14Linear OA(25108, 288, F25, 67) (dual of [288, 180, 68]-code) [i]
15Linear OA(25109, 288, F25, 68) (dual of [288, 179, 69]-code) [i]
16Linear OA(25110, 288, F25, 69) (dual of [288, 178, 70]-code) [i]
17Linear OOA(2587, 288, F25, 2, 46) (dual of [(288, 2), 489, 47]-NRT-code) [i]Extended Algebraic-Geometric NRT-Codes
18Linear OOA(2588, 288, F25, 2, 47) (dual of [(288, 2), 488, 48]-NRT-code) [i]
19Linear OOA(2589, 288, F25, 2, 48) (dual of [(288, 2), 487, 49]-NRT-code) [i]
20Linear OOA(2590, 288, F25, 2, 49) (dual of [(288, 2), 486, 50]-NRT-code) [i]
21Linear OOA(2591, 288, F25, 2, 50) (dual of [(288, 2), 485, 51]-NRT-code) [i]
22Linear OOA(2592, 288, F25, 2, 51) (dual of [(288, 2), 484, 52]-NRT-code) [i]
23Linear OOA(2593, 288, F25, 2, 52) (dual of [(288, 2), 483, 53]-NRT-code) [i]
24Linear OOA(2594, 288, F25, 2, 53) (dual of [(288, 2), 482, 54]-NRT-code) [i]
25Linear OOA(2595, 288, F25, 2, 54) (dual of [(288, 2), 481, 55]-NRT-code) [i]
26Linear OOA(2596, 288, F25, 2, 55) (dual of [(288, 2), 480, 56]-NRT-code) [i]
27Linear OOA(2597, 288, F25, 2, 56) (dual of [(288, 2), 479, 57]-NRT-code) [i]
28Linear OOA(2598, 288, F25, 2, 57) (dual of [(288, 2), 478, 58]-NRT-code) [i]
29Linear OOA(2599, 288, F25, 2, 58) (dual of [(288, 2), 477, 59]-NRT-code) [i]
30Linear OOA(25100, 288, F25, 2, 59) (dual of [(288, 2), 476, 60]-NRT-code) [i]
31Linear OOA(25101, 288, F25, 2, 60) (dual of [(288, 2), 475, 61]-NRT-code) [i]
32Linear OOA(25102, 288, F25, 2, 61) (dual of [(288, 2), 474, 62]-NRT-code) [i]
33Linear OOA(25103, 288, F25, 2, 62) (dual of [(288, 2), 473, 63]-NRT-code) [i]
34Linear OOA(25104, 288, F25, 2, 63) (dual of [(288, 2), 472, 64]-NRT-code) [i]
35Linear OOA(25105, 288, F25, 2, 64) (dual of [(288, 2), 471, 65]-NRT-code) [i]
36Linear OOA(25106, 288, F25, 2, 65) (dual of [(288, 2), 470, 66]-NRT-code) [i]
37Linear OOA(25107, 288, F25, 2, 66) (dual of [(288, 2), 469, 67]-NRT-code) [i]
38Linear OOA(25108, 288, F25, 2, 67) (dual of [(288, 2), 468, 68]-NRT-code) [i]
39Linear OOA(25109, 288, F25, 2, 68) (dual of [(288, 2), 467, 69]-NRT-code) [i]
40Linear OOA(25110, 288, F25, 2, 69) (dual of [(288, 2), 466, 70]-NRT-code) [i]
41Linear OA(25109, 287, F25, 68) (dual of [287, 178, 69]-code) [i]Algebraic-Geometric Codes
42Linear OA(25107, 287, F25, 66) (dual of [287, 180, 67]-code) [i]
43Linear OA(25108, 287, F25, 67) (dual of [287, 179, 68]-code) [i]
44Linear OA(25106, 287, F25, 65) (dual of [287, 181, 66]-code) [i]
45Linear OA(25105, 287, F25, 64) (dual of [287, 182, 65]-code) [i]
46Linear OA(25104, 287, F25, 63) (dual of [287, 183, 64]-code) [i]
47Linear OA(25103, 287, F25, 62) (dual of [287, 184, 63]-code) [i]
48Linear OA(25102, 287, F25, 61) (dual of [287, 185, 62]-code) [i]
49Linear OA(25101, 287, F25, 60) (dual of [287, 186, 61]-code) [i]
50Linear OA(25100, 287, F25, 59) (dual of [287, 187, 60]-code) [i]
51Linear OA(2599, 287, F25, 58) (dual of [287, 188, 59]-code) [i]
52Linear OA(2598, 287, F25, 57) (dual of [287, 189, 58]-code) [i]
53Linear OA(2597, 287, F25, 56) (dual of [287, 190, 57]-code) [i]
54Linear OA(2596, 287, F25, 55) (dual of [287, 191, 56]-code) [i]
55Linear OA(2595, 287, F25, 54) (dual of [287, 192, 55]-code) [i]
56Linear OOA(25107, 287, F25, 2, 66) (dual of [(287, 2), 467, 67]-NRT-code) [i]Algebraic-Geometric NRT-Codes
57Linear OOA(25103, 287, F25, 2, 62) (dual of [(287, 2), 471, 63]-NRT-code) [i]
58Linear OOA(25106, 287, F25, 2, 65) (dual of [(287, 2), 468, 66]-NRT-code) [i]
59Linear OOA(25102, 287, F25, 2, 61) (dual of [(287, 2), 472, 62]-NRT-code) [i]
60Linear OOA(25105, 287, F25, 2, 64) (dual of [(287, 2), 469, 65]-NRT-code) [i]
61Linear OOA(25101, 287, F25, 2, 60) (dual of [(287, 2), 473, 61]-NRT-code) [i]
62Linear OOA(25104, 287, F25, 2, 63) (dual of [(287, 2), 470, 64]-NRT-code) [i]
63Linear OOA(25100, 287, F25, 2, 59) (dual of [(287, 2), 474, 60]-NRT-code) [i]
64Linear OOA(2599, 287, F25, 2, 58) (dual of [(287, 2), 475, 59]-NRT-code) [i]
65Linear OOA(2598, 287, F25, 2, 57) (dual of [(287, 2), 476, 58]-NRT-code) [i]
66Linear OOA(2597, 287, F25, 2, 56) (dual of [(287, 2), 477, 57]-NRT-code) [i]
67Linear OOA(2596, 287, F25, 2, 55) (dual of [(287, 2), 478, 56]-NRT-code) [i]
68Linear OOA(2595, 287, F25, 2, 54) (dual of [(287, 2), 479, 55]-NRT-code) [i]
69Linear OOA(2594, 287, F25, 2, 53) (dual of [(287, 2), 480, 54]-NRT-code) [i]
70Linear OOA(2593, 287, F25, 2, 52) (dual of [(287, 2), 481, 53]-NRT-code) [i]
71Linear OOA(2592, 287, F25, 2, 51) (dual of [(287, 2), 482, 52]-NRT-code) [i]
72Linear OOA(2591, 287, F25, 2, 50) (dual of [(287, 2), 483, 51]-NRT-code) [i]