Information on Result #600694
Function Field F/F25 with g(F) = 23 and N(F) ≥ 176, using an algebraic function field by Teo
Mode: Linear.
Optimality
Compare with manYPoints (online database of function field parameters).
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Digital (23, 175)-sequence over F25 | [i] | Niederreiter–Xing Sequence Construction II/III | |
2 | Linear OA(2555, 176, F25, 32) (dual of [176, 121, 33]-code) | [i] | Extended Algebraic-Geometric Codes | |
3 | Linear OA(2556, 176, F25, 33) (dual of [176, 120, 34]-code) | [i] | ||
4 | Linear OA(2557, 176, F25, 34) (dual of [176, 119, 35]-code) | [i] | ||
5 | Linear OA(2558, 176, F25, 35) (dual of [176, 118, 36]-code) | [i] | ||
6 | Linear OA(2559, 176, F25, 36) (dual of [176, 117, 37]-code) | [i] | ||
7 | Linear OA(2560, 176, F25, 37) (dual of [176, 116, 38]-code) | [i] | ||
8 | Linear OA(2561, 176, F25, 38) (dual of [176, 115, 39]-code) | [i] | ||
9 | Linear OA(2562, 176, F25, 39) (dual of [176, 114, 40]-code) | [i] | ||
10 | Linear OA(2563, 176, F25, 40) (dual of [176, 113, 41]-code) | [i] | ||
11 | Linear OA(2564, 176, F25, 41) (dual of [176, 112, 42]-code) | [i] | ||
12 | Linear OA(2565, 176, F25, 42) (dual of [176, 111, 43]-code) | [i] | ||
13 | Linear OA(2566, 176, F25, 43) (dual of [176, 110, 44]-code) | [i] | ||
14 | Linear OA(2567, 176, F25, 44) (dual of [176, 109, 45]-code) | [i] | ||
15 | Linear OA(2568, 176, F25, 45) (dual of [176, 108, 46]-code) | [i] | ||
16 | Linear OA(2569, 176, F25, 46) (dual of [176, 107, 47]-code) | [i] | ||
17 | Linear OA(2570, 176, F25, 47) (dual of [176, 106, 48]-code) | [i] | ||
18 | Linear OA(2571, 176, F25, 48) (dual of [176, 105, 49]-code) | [i] | ||
19 | Linear OA(2572, 176, F25, 49) (dual of [176, 104, 50]-code) | [i] | ||
20 | Linear OA(2573, 176, F25, 50) (dual of [176, 103, 51]-code) | [i] | ||
21 | Linear OA(2574, 176, F25, 51) (dual of [176, 102, 52]-code) | [i] | ||
22 | Linear OA(2575, 176, F25, 52) (dual of [176, 101, 53]-code) | [i] | ||
23 | Linear OA(2576, 176, F25, 53) (dual of [176, 100, 54]-code) | [i] | ||
24 | Linear OA(2577, 176, F25, 54) (dual of [176, 99, 55]-code) | [i] | ||
25 | Linear OA(2578, 176, F25, 55) (dual of [176, 98, 56]-code) | [i] | ||
26 | Linear OA(2579, 176, F25, 56) (dual of [176, 97, 57]-code) | [i] | ||
27 | Linear OA(2580, 176, F25, 57) (dual of [176, 96, 58]-code) | [i] | ||
28 | Linear OA(2581, 176, F25, 58) (dual of [176, 95, 59]-code) | [i] | ||
29 | Linear OA(2582, 176, F25, 59) (dual of [176, 94, 60]-code) | [i] | ||
30 | Linear OA(2583, 176, F25, 60) (dual of [176, 93, 61]-code) | [i] | ||
31 | Linear OA(2584, 176, F25, 61) (dual of [176, 92, 62]-code) | [i] | ||
32 | Linear OA(2585, 176, F25, 62) (dual of [176, 91, 63]-code) | [i] | ||
33 | Linear OA(2586, 176, F25, 63) (dual of [176, 90, 64]-code) | [i] | ||
34 | Linear OA(2587, 176, F25, 64) (dual of [176, 89, 65]-code) | [i] | ||
35 | Linear OA(2588, 176, F25, 65) (dual of [176, 88, 66]-code) | [i] | ||
36 | Linear OA(2589, 176, F25, 66) (dual of [176, 87, 67]-code) | [i] | ||
37 | Linear OA(2590, 176, F25, 67) (dual of [176, 86, 68]-code) | [i] | ||
38 | Linear OA(2591, 176, F25, 68) (dual of [176, 85, 69]-code) | [i] | ||
39 | Linear OA(2592, 176, F25, 69) (dual of [176, 84, 70]-code) | [i] | ||
40 | Linear OA(2593, 176, F25, 70) (dual of [176, 83, 71]-code) | [i] | ||
41 | Linear OA(2594, 176, F25, 71) (dual of [176, 82, 72]-code) | [i] | ||
42 | Linear OA(2595, 176, F25, 72) (dual of [176, 81, 73]-code) | [i] | ||
43 | Linear OA(2596, 176, F25, 73) (dual of [176, 80, 74]-code) | [i] | ||
44 | Linear OA(2597, 176, F25, 74) (dual of [176, 79, 75]-code) | [i] | ||
45 | Linear OA(2598, 176, F25, 75) (dual of [176, 78, 76]-code) | [i] | ||
46 | Linear OA(2599, 176, F25, 76) (dual of [176, 77, 77]-code) | [i] | ||
47 | Linear OA(25100, 176, F25, 77) (dual of [176, 76, 78]-code) | [i] | ||
48 | Linear OA(25101, 176, F25, 78) (dual of [176, 75, 79]-code) | [i] | ||
49 | Linear OA(25102, 176, F25, 79) (dual of [176, 74, 80]-code) | [i] | ||
50 | Linear OA(25103, 176, F25, 80) (dual of [176, 73, 81]-code) | [i] | ||
51 | Linear OA(25104, 176, F25, 81) (dual of [176, 72, 82]-code) | [i] | ||
52 | Linear OA(25105, 176, F25, 82) (dual of [176, 71, 83]-code) | [i] | ||
53 | Linear OA(25106, 176, F25, 83) (dual of [176, 70, 84]-code) | [i] | ||
54 | Linear OA(25107, 176, F25, 84) (dual of [176, 69, 85]-code) | [i] | ||
55 | Linear OA(25108, 176, F25, 85) (dual of [176, 68, 86]-code) | [i] | ||
56 | Linear OA(25109, 176, F25, 86) (dual of [176, 67, 87]-code) | [i] | ||
57 | Linear OA(25110, 176, F25, 87) (dual of [176, 66, 88]-code) | [i] | ||
58 | Linear OOA(2551, 176, F25, 2, 28) (dual of [(176, 2), 301, 29]-NRT-code) | [i] | Extended Algebraic-Geometric NRT-Codes | |
59 | Linear OOA(2552, 176, F25, 2, 29) (dual of [(176, 2), 300, 30]-NRT-code) | [i] | ||
60 | Linear OOA(2553, 176, F25, 2, 30) (dual of [(176, 2), 299, 31]-NRT-code) | [i] | ||
61 | Linear OOA(2554, 176, F25, 2, 31) (dual of [(176, 2), 298, 32]-NRT-code) | [i] | ||
62 | Linear OOA(2555, 176, F25, 2, 32) (dual of [(176, 2), 297, 33]-NRT-code) | [i] | ||
63 | Linear OOA(2556, 176, F25, 2, 33) (dual of [(176, 2), 296, 34]-NRT-code) | [i] | ||
64 | Linear OOA(2557, 176, F25, 2, 34) (dual of [(176, 2), 295, 35]-NRT-code) | [i] | ||
65 | Linear OOA(2558, 176, F25, 2, 35) (dual of [(176, 2), 294, 36]-NRT-code) | [i] | ||
66 | Linear OOA(2559, 176, F25, 2, 36) (dual of [(176, 2), 293, 37]-NRT-code) | [i] | ||
67 | Linear OOA(2560, 176, F25, 2, 37) (dual of [(176, 2), 292, 38]-NRT-code) | [i] | ||
68 | Linear OOA(2561, 176, F25, 2, 38) (dual of [(176, 2), 291, 39]-NRT-code) | [i] | ||
69 | Linear OOA(2562, 176, F25, 2, 39) (dual of [(176, 2), 290, 40]-NRT-code) | [i] | ||
70 | Linear OOA(2563, 176, F25, 2, 40) (dual of [(176, 2), 289, 41]-NRT-code) | [i] | ||
71 | Linear OOA(2564, 176, F25, 2, 41) (dual of [(176, 2), 288, 42]-NRT-code) | [i] | ||
72 | Linear OOA(2565, 176, F25, 2, 42) (dual of [(176, 2), 287, 43]-NRT-code) | [i] | ||
73 | Linear OOA(2566, 176, F25, 2, 43) (dual of [(176, 2), 286, 44]-NRT-code) | [i] | ||
74 | Linear OOA(2567, 176, F25, 2, 44) (dual of [(176, 2), 285, 45]-NRT-code) | [i] | ||
75 | Linear OOA(2568, 176, F25, 2, 45) (dual of [(176, 2), 284, 46]-NRT-code) | [i] | ||
76 | Linear OOA(2569, 176, F25, 2, 46) (dual of [(176, 2), 283, 47]-NRT-code) | [i] | ||
77 | Linear OOA(2570, 176, F25, 2, 47) (dual of [(176, 2), 282, 48]-NRT-code) | [i] | ||
78 | Linear OOA(2571, 176, F25, 2, 48) (dual of [(176, 2), 281, 49]-NRT-code) | [i] | ||
79 | Linear OOA(2572, 176, F25, 2, 49) (dual of [(176, 2), 280, 50]-NRT-code) | [i] | ||
80 | Linear OOA(2573, 176, F25, 2, 50) (dual of [(176, 2), 279, 51]-NRT-code) | [i] | ||
81 | Linear OOA(2574, 176, F25, 2, 51) (dual of [(176, 2), 278, 52]-NRT-code) | [i] | ||
82 | Linear OOA(2575, 176, F25, 2, 52) (dual of [(176, 2), 277, 53]-NRT-code) | [i] | ||
83 | Linear OOA(2576, 176, F25, 2, 53) (dual of [(176, 2), 276, 54]-NRT-code) | [i] | ||
84 | Linear OOA(2577, 176, F25, 2, 54) (dual of [(176, 2), 275, 55]-NRT-code) | [i] | ||
85 | Linear OOA(2578, 176, F25, 2, 55) (dual of [(176, 2), 274, 56]-NRT-code) | [i] | ||
86 | Linear OOA(2579, 176, F25, 2, 56) (dual of [(176, 2), 273, 57]-NRT-code) | [i] | ||
87 | Linear OOA(2580, 176, F25, 2, 57) (dual of [(176, 2), 272, 58]-NRT-code) | [i] | ||
88 | Linear OOA(2581, 176, F25, 2, 58) (dual of [(176, 2), 271, 59]-NRT-code) | [i] | ||
89 | Linear OOA(2582, 176, F25, 2, 59) (dual of [(176, 2), 270, 60]-NRT-code) | [i] | ||
90 | Linear OOA(2583, 176, F25, 2, 60) (dual of [(176, 2), 269, 61]-NRT-code) | [i] | ||
91 | Linear OOA(2584, 176, F25, 2, 61) (dual of [(176, 2), 268, 62]-NRT-code) | [i] | ||
92 | Linear OOA(2585, 176, F25, 2, 62) (dual of [(176, 2), 267, 63]-NRT-code) | [i] | ||
93 | Linear OOA(2586, 176, F25, 2, 63) (dual of [(176, 2), 266, 64]-NRT-code) | [i] | ||
94 | Linear OOA(2587, 176, F25, 2, 64) (dual of [(176, 2), 265, 65]-NRT-code) | [i] | ||
95 | Linear OOA(2588, 176, F25, 2, 65) (dual of [(176, 2), 264, 66]-NRT-code) | [i] | ||
96 | Linear OOA(2589, 176, F25, 2, 66) (dual of [(176, 2), 263, 67]-NRT-code) | [i] | ||
97 | Linear OOA(2590, 176, F25, 2, 67) (dual of [(176, 2), 262, 68]-NRT-code) | [i] | ||
98 | Linear OOA(2591, 176, F25, 2, 68) (dual of [(176, 2), 261, 69]-NRT-code) | [i] | ||
99 | Linear OOA(2592, 176, F25, 2, 69) (dual of [(176, 2), 260, 70]-NRT-code) | [i] | ||
100 | Linear OOA(2593, 176, F25, 2, 70) (dual of [(176, 2), 259, 71]-NRT-code) | [i] | ||
101 | Linear OOA(2594, 176, F25, 2, 71) (dual of [(176, 2), 258, 72]-NRT-code) | [i] | ||
102 | Linear OOA(2595, 176, F25, 2, 72) (dual of [(176, 2), 257, 73]-NRT-code) | [i] | ||
103 | Linear OOA(2596, 176, F25, 2, 73) (dual of [(176, 2), 256, 74]-NRT-code) | [i] | ||
104 | Linear OOA(2597, 176, F25, 2, 74) (dual of [(176, 2), 255, 75]-NRT-code) | [i] | ||
105 | Linear OOA(2598, 176, F25, 2, 75) (dual of [(176, 2), 254, 76]-NRT-code) | [i] | ||
106 | Linear OOA(2599, 176, F25, 2, 76) (dual of [(176, 2), 253, 77]-NRT-code) | [i] | ||
107 | Linear OOA(25100, 176, F25, 2, 77) (dual of [(176, 2), 252, 78]-NRT-code) | [i] | ||
108 | Linear OOA(25101, 176, F25, 2, 78) (dual of [(176, 2), 251, 79]-NRT-code) | [i] | ||
109 | Linear OOA(25102, 176, F25, 2, 79) (dual of [(176, 2), 250, 80]-NRT-code) | [i] | ||
110 | Linear OOA(25103, 176, F25, 2, 80) (dual of [(176, 2), 249, 81]-NRT-code) | [i] | ||
111 | Linear OOA(25104, 176, F25, 2, 81) (dual of [(176, 2), 248, 82]-NRT-code) | [i] | ||
112 | Linear OOA(25105, 176, F25, 2, 82) (dual of [(176, 2), 247, 83]-NRT-code) | [i] | ||
113 | Linear OOA(25106, 176, F25, 2, 83) (dual of [(176, 2), 246, 84]-NRT-code) | [i] | ||
114 | Linear OOA(25107, 176, F25, 2, 84) (dual of [(176, 2), 245, 85]-NRT-code) | [i] | ||
115 | Linear OOA(25108, 176, F25, 2, 85) (dual of [(176, 2), 244, 86]-NRT-code) | [i] | ||
116 | Linear OOA(25109, 176, F25, 2, 86) (dual of [(176, 2), 243, 87]-NRT-code) | [i] | ||
117 | Linear OOA(25110, 176, F25, 2, 87) (dual of [(176, 2), 242, 88]-NRT-code) | [i] |