Information on Result #604188

Linear OA(263, 64, F2, 63) (dual of [64, 1, 64]-code or 64-arc in PG(62,2)), using dual of repetition code with length 64

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(263, 64, F2, 62) (dual of [64, 1, 63]-code) [i]Strength Reduction
2Linear OA(263, 64, F2, 61) (dual of [64, 1, 62]-code) [i]
3Linear OA(263, 64, F2, 60) (dual of [64, 1, 61]-code) [i]
4Linear OA(263, 64, F2, 59) (dual of [64, 1, 60]-code) [i]
5Linear OA(263, 64, F2, 58) (dual of [64, 1, 59]-code) [i]
6Linear OA(263, 64, F2, 57) (dual of [64, 1, 58]-code) [i]
7Linear OA(263, 64, F2, 56) (dual of [64, 1, 57]-code) [i]
8Linear OA(263, 64, F2, 55) (dual of [64, 1, 56]-code) [i]
9Linear OA(263, 64, F2, 54) (dual of [64, 1, 55]-code) [i]
10Linear OA(263, 64, F2, 53) (dual of [64, 1, 54]-code) [i]
11Linear OA(263, 64, F2, 52) (dual of [64, 1, 53]-code) [i]
12Linear OA(263, 64, F2, 51) (dual of [64, 1, 52]-code) [i]
13Linear OA(263, 64, F2, 50) (dual of [64, 1, 51]-code) [i]
14Linear OA(263, 64, F2, 49) (dual of [64, 1, 50]-code) [i]
15Linear OA(263, 64, F2, 48) (dual of [64, 1, 49]-code) [i]
16Linear OA(263, 64, F2, 47) (dual of [64, 1, 48]-code) [i]
17Linear OA(263, 64, F2, 46) (dual of [64, 1, 47]-code) [i]
18Linear OA(263, 64, F2, 45) (dual of [64, 1, 46]-code) [i]
19Linear OA(263, 64, F2, 44) (dual of [64, 1, 45]-code) [i]
20Linear OA(263, 64, F2, 43) (dual of [64, 1, 44]-code) [i]