Information on Result #604232
Linear OA(2107, 108, F2, 107) (dual of [108, 1, 108]-code or 108-arc in PG(106,2)), using dual of repetition code with length 108
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2107, 108, F2, 106) (dual of [108, 1, 107]-code) | [i] | Strength Reduction | |
2 | Linear OA(2107, 108, F2, 105) (dual of [108, 1, 106]-code) | [i] | ||
3 | Linear OA(2107, 108, F2, 104) (dual of [108, 1, 105]-code) | [i] | ||
4 | Linear OA(2107, 108, F2, 103) (dual of [108, 1, 104]-code) | [i] | ||
5 | Linear OA(2107, 108, F2, 102) (dual of [108, 1, 103]-code) | [i] | ||
6 | Linear OA(2107, 108, F2, 101) (dual of [108, 1, 102]-code) | [i] | ||
7 | Linear OA(2107, 108, F2, 100) (dual of [108, 1, 101]-code) | [i] | ||
8 | Linear OA(2107, 108, F2, 99) (dual of [108, 1, 100]-code) | [i] | ||
9 | Linear OA(2107, 108, F2, 98) (dual of [108, 1, 99]-code) | [i] | ||
10 | Linear OA(2107, 108, F2, 97) (dual of [108, 1, 98]-code) | [i] | ||
11 | Linear OA(2107, 108, F2, 96) (dual of [108, 1, 97]-code) | [i] | ||
12 | Linear OA(2107, 108, F2, 95) (dual of [108, 1, 96]-code) | [i] | ||
13 | Linear OA(2107, 108, F2, 94) (dual of [108, 1, 95]-code) | [i] | ||
14 | Linear OA(2107, 108, F2, 93) (dual of [108, 1, 94]-code) | [i] | ||
15 | Linear OA(2107, 108, F2, 92) (dual of [108, 1, 93]-code) | [i] | ||
16 | Linear OA(2107, 108, F2, 91) (dual of [108, 1, 92]-code) | [i] | ||
17 | Linear OA(2107, 108, F2, 90) (dual of [108, 1, 91]-code) | [i] | ||
18 | Linear OA(2107, 108, F2, 89) (dual of [108, 1, 90]-code) | [i] | ||
19 | Linear OA(2107, 108, F2, 88) (dual of [108, 1, 89]-code) | [i] | ||
20 | Linear OA(2107, 108, F2, 87) (dual of [108, 1, 88]-code) | [i] | ||
21 | Linear OA(2107, 108, F2, 86) (dual of [108, 1, 87]-code) | [i] | ||
22 | Linear OA(2107, 108, F2, 85) (dual of [108, 1, 86]-code) | [i] | ||
23 | Linear OA(2107, 108, F2, 84) (dual of [108, 1, 85]-code) | [i] | ||
24 | Linear OA(2107, 108, F2, 83) (dual of [108, 1, 84]-code) | [i] | ||
25 | Linear OA(2107, 108, F2, 82) (dual of [108, 1, 83]-code) | [i] | ||
26 | Linear OA(2107, 108, F2, 81) (dual of [108, 1, 82]-code) | [i] | ||
27 | Linear OA(2107, 108, F2, 80) (dual of [108, 1, 81]-code) | [i] | ||
28 | Linear OA(2107, 108, F2, 79) (dual of [108, 1, 80]-code) | [i] | ||
29 | Linear OA(2107, 108, F2, 78) (dual of [108, 1, 79]-code) | [i] | ||
30 | Linear OA(2107, 108, F2, 77) (dual of [108, 1, 78]-code) | [i] | ||
31 | Linear OA(2107, 108, F2, 76) (dual of [108, 1, 77]-code) | [i] | ||
32 | Linear OA(2107, 108, F2, 75) (dual of [108, 1, 76]-code) | [i] | ||
33 | Linear OA(2107, 108, F2, 74) (dual of [108, 1, 75]-code) | [i] | ||
34 | Linear OA(2107, 108, F2, 73) (dual of [108, 1, 74]-code) | [i] | ||
35 | Linear OA(2107, 108, F2, 72) (dual of [108, 1, 73]-code) | [i] |