Information on Result #604389
Linear OA(33, 4, F3, 3) (dual of [4, 1, 4]-code or 4-arc in PG(2,3) or 4-cap in PG(2,3)), using dual of repetition code with length 4
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(324, 248, F3, 7) (dual of [248, 224, 8]-code) | [i] | Construction X with Cyclic Codes | |
2 | Linear OA(328, 734, F3, 7) (dual of [734, 706, 8]-code) | [i] | ||
3 | Linear OA(332, 2192, F3, 7) (dual of [2192, 2160, 8]-code) | [i] | ||
4 | Linear OA(336, 6566, F3, 7) (dual of [6566, 6530, 8]-code) | [i] | ||
5 | Linear OA(340, 19688, F3, 7) (dual of [19688, 19648, 8]-code) | [i] | ||
6 | Linear OA(344, 59054, F3, 7) (dual of [59054, 59010, 8]-code) | [i] | ||
7 | Linear OA(348, 177152, F3, 7) (dual of [177152, 177104, 8]-code) | [i] | ||
8 | Linear OA(352, 531446, F3, 7) (dual of [531446, 531394, 8]-code) | [i] | ||
9 | Linear OA(356, 1594328, F3, 7) (dual of [1594328, 1594272, 8]-code) | [i] | ||
10 | Linear OA(360, 4782974, F3, 7) (dual of [4782974, 4782914, 8]-code) | [i] | ||
11 | Linear OA(334, 248, F3, 9) (dual of [248, 214, 10]-code) | [i] | ||
12 | Linear OA(364, 95, F3, 23) (dual of [95, 31, 24]-code) | [i] | ||
13 | Linear OA(370, 95, F3, 26) (dual of [95, 25, 27]-code) | [i] | ||
14 | Linear OA(398, 108, F3, 55) (dual of [108, 10, 56]-code) | [i] | ||
15 | Linear OA(3178, 212, F3, 55) (dual of [212, 34, 56]-code) | [i] | ||
16 | Linear OA(399, 108, F3, 59) (dual of [108, 9, 60]-code) | [i] | ||
17 | Linear OA(3180, 212, F3, 59) (dual of [212, 32, 60]-code) | [i] | ||
18 | Linear OA(3102, 108, F3, 68) (dual of [108, 6, 69]-code) | [i] | ||
19 | Linear OA(3214, 228, F3, 73) (dual of [228, 14, 74]-code) | [i] | ||
20 | Linear OA(3218, 228, F3, 115) (dual of [228, 10, 116]-code) | [i] | ||
21 | Linear OA(3228, 4782974, F3, 25) (dual of [4782974, 4782746, 26]-code) | [i] | ||
22 | Linear OA(3172, 4782974, F3, 19) (dual of [4782974, 4782802, 20]-code) | [i] | ||
23 | Linear OA(3116, 4782974, F3, 13) (dual of [4782974, 4782858, 14]-code) | [i] | ||
24 | Linear OA(3212, 1594328, F3, 25) (dual of [1594328, 1594116, 26]-code) | [i] | ||
25 | Linear OA(3160, 1594328, F3, 19) (dual of [1594328, 1594168, 20]-code) | [i] | ||
26 | Linear OA(3108, 1594328, F3, 13) (dual of [1594328, 1594220, 14]-code) | [i] | ||
27 | Linear OA(3244, 531446, F3, 31) (dual of [531446, 531202, 32]-code) | [i] | ||
28 | Linear OA(3196, 531446, F3, 25) (dual of [531446, 531250, 26]-code) | [i] | ||
29 | Linear OA(3148, 531446, F3, 19) (dual of [531446, 531298, 20]-code) | [i] | ||
30 | Linear OA(3100, 531446, F3, 13) (dual of [531446, 531346, 14]-code) | [i] | ||
31 | Linear OA(3224, 177152, F3, 31) (dual of [177152, 176928, 32]-code) | [i] | ||
32 | Linear OA(3180, 177152, F3, 25) (dual of [177152, 176972, 26]-code) | [i] | ||
33 | Linear OA(3136, 177152, F3, 19) (dual of [177152, 177016, 20]-code) | [i] | ||
34 | Linear OA(392, 177152, F3, 13) (dual of [177152, 177060, 14]-code) | [i] | ||
35 | Linear OA(3244, 59054, F3, 37) (dual of [59054, 58810, 38]-code) | [i] | ||
36 | Linear OA(3204, 59054, F3, 31) (dual of [59054, 58850, 32]-code) | [i] | ||
37 | Linear OA(3164, 59054, F3, 25) (dual of [59054, 58890, 26]-code) | [i] | ||
38 | Linear OA(3124, 59054, F3, 19) (dual of [59054, 58930, 20]-code) | [i] | ||
39 | Linear OA(384, 59054, F3, 13) (dual of [59054, 58970, 14]-code) | [i] | ||
40 | Linear OA(3220, 19688, F3, 37) (dual of [19688, 19468, 38]-code) | [i] | ||
41 | Linear OA(3184, 19688, F3, 31) (dual of [19688, 19504, 32]-code) | [i] | ||
42 | Linear OA(3148, 19688, F3, 25) (dual of [19688, 19540, 26]-code) | [i] | ||
43 | Linear OA(3112, 19688, F3, 19) (dual of [19688, 19576, 20]-code) | [i] | ||
44 | Linear OA(376, 19688, F3, 13) (dual of [19688, 19612, 14]-code) | [i] | ||
45 | Linear OA(3228, 6566, F3, 43) (dual of [6566, 6338, 44]-code) | [i] | ||
46 | Linear OA(3196, 6566, F3, 37) (dual of [6566, 6370, 38]-code) | [i] | ||
47 | Linear OA(3164, 6566, F3, 31) (dual of [6566, 6402, 32]-code) | [i] | ||
48 | Linear OA(3132, 6566, F3, 25) (dual of [6566, 6434, 26]-code) | [i] | ||
49 | Linear OA(3100, 6566, F3, 19) (dual of [6566, 6466, 20]-code) | [i] | ||
50 | Linear OA(368, 6566, F3, 13) (dual of [6566, 6498, 14]-code) | [i] | ||
51 | Linear OA(3228, 2192, F3, 49) (dual of [2192, 1964, 50]-code) | [i] | ||
52 | Linear OA(3200, 2192, F3, 43) (dual of [2192, 1992, 44]-code) | [i] | ||
53 | Linear OA(3172, 2192, F3, 37) (dual of [2192, 2020, 38]-code) | [i] | ||
54 | Linear OA(3144, 2192, F3, 31) (dual of [2192, 2048, 32]-code) | [i] | ||
55 | Linear OA(3116, 2192, F3, 25) (dual of [2192, 2076, 26]-code) | [i] | ||
56 | Linear OA(388, 2192, F3, 19) (dual of [2192, 2104, 20]-code) | [i] | ||
57 | Linear OA(360, 2192, F3, 13) (dual of [2192, 2132, 14]-code) | [i] | ||
58 | Linear OA(3232, 734, F3, 61) (dual of [734, 502, 62]-code) | [i] | ||
59 | Linear OA(3100, 734, F3, 25) (dual of [734, 634, 26]-code) | [i] | ||
60 | Linear OA(376, 734, F3, 19) (dual of [734, 658, 20]-code) | [i] | ||
61 | Linear OA(352, 734, F3, 13) (dual of [734, 682, 14]-code) | [i] | ||
62 | Linear OA(3136, 369, F3, 37) (dual of [369, 233, 38]-code) | [i] | ||
63 | Linear OA(384, 248, F3, 25) (dual of [248, 164, 26]-code) | [i] | ||
64 | Linear OA(364, 248, F3, 19) (dual of [248, 184, 20]-code) | [i] | ||
65 | Linear OA(344, 248, F3, 13) (dual of [248, 204, 14]-code) | [i] | ||
66 | Linear OA(363, 125, F3, 21) (dual of [125, 62, 22]-code) | [i] | ||
67 | Linear OA(3112, 118, F3, 74) (dual of [118, 6, 75]-code) | [i] | Construction XX with a Chain of Cyclic Codes | |
68 | Linear OA(330, 61, F3, 13) (dual of [61, 31, 14]-code) | [i] | Construction X with Varšamov Bound | |
69 | Linear OA(331, 62, F3, 14) (dual of [62, 31, 15]-code) | [i] | ||
70 | Linear OA(344, 87, F3, 18) (dual of [87, 43, 19]-code) | [i] | ||
71 | Linear OA(364, 85, F3, 30) (dual of [85, 21, 31]-code) | [i] | ||
72 | Linear OA(371, 92, F3, 34) (dual of [92, 21, 35]-code) | [i] | ||
73 | Linear OA(395, 116, F3, 46) (dual of [116, 21, 47]-code) | [i] | ||
74 | Linear OA(396, 117, F3, 47) (dual of [117, 21, 48]-code) | [i] | ||
75 | Linear OA(3116, 177177, F3, 15) (dual of [177177, 177061, 16]-code) | [i] | ||
76 | Linear OA(3121, 59090, F3, 17) (dual of [59090, 58969, 18]-code) | [i] | ||
77 | Linear OA(3122, 143, F3, 60) (dual of [143, 21, 61]-code) | [i] | ||
78 | Linear OA(3123, 144, F3, 61) (dual of [144, 21, 62]-code) | [i] | ||
79 | Linear OA(3126, 531473, F3, 15) (dual of [531473, 531347, 16]-code) | [i] | ||
80 | Linear OA(3129, 150, F3, 64) (dual of [150, 21, 65]-code) | [i] | ||
81 | Linear OA(3130, 151, F3, 65) (dual of [151, 21, 66]-code) | [i] | ||
82 | Linear OA(3132, 177191, F3, 17) (dual of [177191, 177059, 18]-code) | [i] | ||
83 | Linear OA(3136, 1594357, F3, 15) (dual of [1594357, 1594221, 16]-code) | [i] | ||
84 | Linear OA(3138, 177176, F3, 18) (dual of [177176, 177038, 19]-code) | [i] | ||
85 | Linear OA(3141, 160, F3, 72) (dual of [160, 19, 73]-code) | [i] | ||
86 | Linear OA(3141, 59090, F3, 20) (dual of [59090, 58949, 21]-code) | [i] | ||
87 | Linear OA(3143, 531488, F3, 17) (dual of [531488, 531345, 18]-code) | [i] | ||
88 | Linear OA(3150, 531472, F3, 18) (dual of [531472, 531322, 19]-code) | [i] | ||
89 | Linear OA(3154, 176, F3, 77) (dual of [176, 22, 78]-code) | [i] | ||
90 | Linear OA(3154, 177191, F3, 20) (dual of [177191, 177037, 21]-code) | [i] | ||
91 | Linear OA(3154, 1594373, F3, 17) (dual of [1594373, 1594219, 18]-code) | [i] | ||
92 | Linear OA(3158, 19734, F3, 24) (dual of [19734, 19576, 25]-code) | [i] | ||
93 | Linear OA(3160, 6609, F3, 28) (dual of [6609, 6449, 29]-code) | [i] | ||
94 | Linear OA(3160, 19736, F3, 25) (dual of [19736, 19576, 26]-code) | [i] | ||
95 | Linear OA(3162, 1594356, F3, 18) (dual of [1594356, 1594194, 19]-code) | [i] | ||
96 | Linear OA(3165, 4783022, F3, 17) (dual of [4783022, 4782857, 18]-code) | [i] | ||
97 | Linear OA(3174, 59104, F3, 24) (dual of [59104, 58930, 25]-code) | [i] | ||
98 | Linear OA(3174, 4783004, F3, 18) (dual of [4783004, 4782830, 19]-code) | [i] | ||
99 | Linear OA(3176, 6610, F3, 31) (dual of [6610, 6434, 32]-code) | [i] | ||
100 | Linear OA(3177, 202, F3, 88) (dual of [202, 25, 89]-code) | [i] | ||
101 | Linear OA(3178, 203, F3, 89) (dual of [203, 25, 90]-code) | [i] | ||
102 | Linear OA(3180, 213, F3, 86) (dual of [213, 33, 87]-code) | [i] | ||
103 | Linear OA(3181, 214, F3, 87) (dual of [214, 33, 88]-code) | [i] | ||
104 | Linear OA(3190, 177206, F3, 24) (dual of [177206, 177016, 25]-code) | [i] | ||
105 | Linear OA(3192, 6609, F3, 34) (dual of [6609, 6417, 35]-code) | [i] | ||
106 | Linear OA(3194, 19734, F3, 30) (dual of [19734, 19540, 31]-code) | [i] | ||
107 | Linear OA(3205, 6607, F3, 36) (dual of [6607, 6402, 37]-code) | [i] | ||
108 | Linear OA(3208, 6610, F3, 37) (dual of [6610, 6402, 38]-code) | [i] | ||
109 | Linear OA(3209, 19748, F3, 32) (dual of [19748, 19539, 33]-code) | [i] | ||
110 | Linear OA(3219, 19749, F3, 34) (dual of [19749, 19530, 35]-code) | [i] | ||
111 | Linear OA(3224, 6609, F3, 40) (dual of [6609, 6385, 41]-code) | [i] | ||
112 | Linear OA(3227, 19748, F3, 35) (dual of [19748, 19521, 36]-code) | [i] | ||
113 | Linear OA(3237, 6607, F3, 42) (dual of [6607, 6370, 43]-code) | [i] | ||
114 | Linear OA(3237, 19758, F3, 36) (dual of [19758, 19521, 37]-code) | [i] | ||
115 | Linear OA(3240, 6610, F3, 43) (dual of [6610, 6370, 44]-code) | [i] | ||
116 | Linear OA(3241, 59131, F3, 33) (dual of [59131, 58890, 34]-code) | [i] | ||
117 | Linear OA(3245, 19748, F3, 38) (dual of [19748, 19503, 39]-code) | [i] | ||
118 | Linear OA(348, 97, F3, 19) (dual of [97, 49, 20]-code) | [i] | ||
119 | Linear OA(349, 98, F3, 20) (dual of [98, 49, 21]-code) | [i] | ||
120 | Linear OA(357, 82, F3, 26) (dual of [82, 25, 27]-code) | [i] | ||
121 | Linear OA(375, 99, F3, 35) (dual of [99, 24, 36]-code) | [i] | ||
122 | Linear OA(3110, 134, F3, 53) (dual of [134, 24, 54]-code) | [i] | ||
123 | Linear OA(352, 107, F3, 20) (dual of [107, 55, 21]-code) | [i] | ||
124 | Linear OA(353, 108, F3, 21) (dual of [108, 55, 22]-code) | [i] | ||
125 | Linear OA(386, 129, F3, 36) (dual of [129, 43, 37]-code) | [i] | ||
126 | Linear OA(392, 134, F3, 39) (dual of [134, 42, 40]-code) | [i] | ||
127 | Linear OA(395, 137, F3, 41) (dual of [137, 42, 42]-code) | [i] | ||
128 | Linear OA(3109, 146, F3, 48) (dual of [146, 37, 49]-code) | [i] | ||
129 | Linear OA(3110, 147, F3, 49) (dual of [147, 37, 50]-code) | [i] | ||
130 | Linear OA(3111, 143, F3, 51) (dual of [143, 32, 52]-code) | [i] | ||
131 | Linear OA(3128, 166, F3, 57) (dual of [166, 38, 58]-code) | [i] | ||
132 | Linear OA(3132, 168, F3, 60) (dual of [168, 36, 61]-code) | [i] | ||
133 | Linear OA(3133, 169, F3, 61) (dual of [169, 36, 62]-code) | [i] | ||
134 | Linear OA(3137, 173, F3, 63) (dual of [173, 36, 64]-code) | [i] | ||
135 | Linear OA(3153, 186, F3, 72) (dual of [186, 33, 73]-code) | [i] | ||
136 | Linear OA(3163, 197, F3, 77) (dual of [197, 34, 78]-code) | [i] | ||
137 | Linear OA(3172, 205, F3, 82) (dual of [205, 33, 83]-code) | [i] |