Information on Result #606329
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(355, 89, F3, 23) (dual of [89, 34, 24]-code) | [i] | Construction XX with Cyclic Codes | |
2 | Linear OA(354, 87, F3, 23) (dual of [87, 33, 24]-code) | [i] | ||
3 | Linear OA(391, 107, F3, 50) (dual of [107, 16, 51]-code) | [i] | Construction XX with a Chain of Cyclic Codes | |
4 | Linear OA(389, 105, F3, 50) (dual of [105, 16, 51]-code) | [i] | ||
5 | Linear OA(337, 45, F3, 23) (dual of [45, 8, 24]-code) | [i] | ||
6 | Linear OA(3247, 19697, F3, 41) (dual of [19697, 19450, 42]-code) | [i] | Construction XX with a Chain of Extended Narrow-Sense BCH Codes | |
7 | Linear OA(3239, 19707, F3, 39) (dual of [19707, 19468, 40]-code) | [i] | ||
8 | Linear OA(3229, 19697, F3, 38) (dual of [19697, 19468, 39]-code) | [i] | ||
9 | Linear OA(3221, 19707, F3, 36) (dual of [19707, 19486, 37]-code) | [i] | ||
10 | Linear OA(3211, 19697, F3, 35) (dual of [19697, 19486, 36]-code) | [i] | ||
11 | Linear OA(3203, 19707, F3, 33) (dual of [19707, 19504, 34]-code) | [i] | ||
12 | Linear OA(3193, 19697, F3, 32) (dual of [19697, 19504, 33]-code) | [i] | ||
13 | Linear OA(3185, 19707, F3, 30) (dual of [19707, 19522, 31]-code) | [i] | ||
14 | Linear OA(3175, 19697, F3, 29) (dual of [19697, 19522, 30]-code) | [i] | ||
15 | Linear OA(3167, 19707, F3, 27) (dual of [19707, 19540, 28]-code) | [i] | ||
16 | Linear OA(3157, 19697, F3, 26) (dual of [19697, 19540, 27]-code) | [i] | ||
17 | Linear OA(3149, 19707, F3, 24) (dual of [19707, 19558, 25]-code) | [i] | ||
18 | Linear OA(3139, 19697, F3, 23) (dual of [19697, 19558, 24]-code) | [i] | ||
19 | Linear OA(3131, 19707, F3, 21) (dual of [19707, 19576, 22]-code) | [i] | ||
20 | Linear OA(3121, 19697, F3, 20) (dual of [19697, 19576, 21]-code) | [i] | ||
21 | Linear OA(3113, 19707, F3, 18) (dual of [19707, 19594, 19]-code) | [i] | ||
22 | Linear OA(3103, 19697, F3, 17) (dual of [19697, 19594, 18]-code) | [i] | ||
23 | Linear OA(385, 19697, F3, 14) (dual of [19697, 19612, 15]-code) | [i] | ||
24 | Linear OA(377, 19707, F3, 12) (dual of [19707, 19630, 13]-code) | [i] | ||
25 | Linear OA(367, 19697, F3, 11) (dual of [19697, 19630, 12]-code) | [i] | ||
26 | Linear OA(349, 19697, F3, 8) (dual of [19697, 19648, 9]-code) | [i] | ||
27 | Linear OA(3245, 6583, F3, 45) (dual of [6583, 6338, 46]-code) | [i] | ||
28 | Linear OA(3242, 6596, F3, 44) (dual of [6596, 6354, 45]-code) | [i] | ||
29 | Linear OA(3229, 6583, F3, 42) (dual of [6583, 6354, 43]-code) | [i] | ||
30 | Linear OA(3226, 6596, F3, 41) (dual of [6596, 6370, 42]-code) | [i] | ||
31 | Linear OA(3213, 6583, F3, 39) (dual of [6583, 6370, 40]-code) | [i] | ||
32 | Linear OA(3210, 6596, F3, 38) (dual of [6596, 6386, 39]-code) | [i] | ||
33 | Linear OA(3197, 6583, F3, 36) (dual of [6583, 6386, 37]-code) | [i] | ||
34 | Linear OA(3194, 6596, F3, 35) (dual of [6596, 6402, 36]-code) | [i] | ||
35 | Linear OA(3181, 6583, F3, 33) (dual of [6583, 6402, 34]-code) | [i] | ||
36 | Linear OA(3178, 6596, F3, 32) (dual of [6596, 6418, 33]-code) | [i] | ||
37 | Linear OA(3165, 6583, F3, 30) (dual of [6583, 6418, 31]-code) | [i] | ||
38 | Linear OA(3162, 6596, F3, 29) (dual of [6596, 6434, 30]-code) | [i] | ||
39 | Linear OA(3149, 6583, F3, 27) (dual of [6583, 6434, 28]-code) | [i] | ||
40 | Linear OA(3146, 6596, F3, 26) (dual of [6596, 6450, 27]-code) | [i] | ||
41 | Linear OA(3133, 6583, F3, 24) (dual of [6583, 6450, 25]-code) | [i] | ||
42 | Linear OA(3130, 6596, F3, 23) (dual of [6596, 6466, 24]-code) | [i] | ||
43 | Linear OA(3117, 6583, F3, 21) (dual of [6583, 6466, 22]-code) | [i] | ||
44 | Linear OA(3114, 6596, F3, 20) (dual of [6596, 6482, 21]-code) | [i] | ||
45 | Linear OA(3101, 6583, F3, 18) (dual of [6583, 6482, 19]-code) | [i] | ||
46 | Linear OA(398, 6596, F3, 17) (dual of [6596, 6498, 18]-code) | [i] | ||
47 | Linear OA(369, 6583, F3, 12) (dual of [6583, 6514, 13]-code) | [i] | ||
48 | Linear OA(3243, 2207, F3, 51) (dual of [2207, 1964, 52]-code) | [i] | ||
49 | Linear OA(3241, 2219, F3, 50) (dual of [2219, 1978, 51]-code) | [i] | ||
50 | Linear OA(3229, 2207, F3, 48) (dual of [2207, 1978, 49]-code) | [i] | ||
51 | Linear OA(3227, 2219, F3, 47) (dual of [2219, 1992, 48]-code) | [i] | ||
52 | Linear OA(3215, 2207, F3, 45) (dual of [2207, 1992, 46]-code) | [i] | ||
53 | Linear OA(3213, 2219, F3, 44) (dual of [2219, 2006, 45]-code) | [i] | ||
54 | Linear OA(3201, 2207, F3, 42) (dual of [2207, 2006, 43]-code) | [i] | ||
55 | Linear OA(3199, 2219, F3, 41) (dual of [2219, 2020, 42]-code) | [i] | ||
56 | Linear OA(3187, 2207, F3, 39) (dual of [2207, 2020, 40]-code) | [i] | ||
57 | Linear OA(3185, 2219, F3, 38) (dual of [2219, 2034, 39]-code) | [i] | ||
58 | Linear OA(3173, 2207, F3, 36) (dual of [2207, 2034, 37]-code) | [i] | ||
59 | Linear OA(3171, 2219, F3, 35) (dual of [2219, 2048, 36]-code) | [i] | ||
60 | Linear OA(3159, 2207, F3, 33) (dual of [2207, 2048, 34]-code) | [i] | ||
61 | Linear OA(3157, 2219, F3, 32) (dual of [2219, 2062, 33]-code) | [i] | ||
62 | Linear OA(3145, 2207, F3, 30) (dual of [2207, 2062, 31]-code) | [i] | ||
63 | Linear OA(3143, 2219, F3, 29) (dual of [2219, 2076, 30]-code) | [i] | ||
64 | Linear OA(3131, 2207, F3, 27) (dual of [2207, 2076, 28]-code) | [i] | ||
65 | Linear OA(3129, 2219, F3, 26) (dual of [2219, 2090, 27]-code) | [i] | ||
66 | Linear OA(3117, 2207, F3, 24) (dual of [2207, 2090, 25]-code) | [i] | ||
67 | Linear OA(3115, 2219, F3, 23) (dual of [2219, 2104, 24]-code) | [i] | ||
68 | Linear OA(3103, 2207, F3, 21) (dual of [2207, 2104, 22]-code) | [i] | ||
69 | Linear OA(3101, 2219, F3, 20) (dual of [2219, 2118, 21]-code) | [i] | ||
70 | Linear OA(389, 2207, F3, 18) (dual of [2207, 2118, 19]-code) | [i] | ||
71 | Linear OA(387, 2219, F3, 17) (dual of [2219, 2132, 18]-code) | [i] | ||
72 | Linear OA(361, 2207, F3, 12) (dual of [2207, 2146, 13]-code) | [i] | ||
73 | Linear OA(3250, 1114, F3, 54) (dual of [1114, 864, 55]-code) | [i] | ||
74 | Linear OA(3236, 1114, F3, 51) (dual of [1114, 878, 52]-code) | [i] | ||
75 | Linear OA(3222, 1114, F3, 48) (dual of [1114, 892, 49]-code) | [i] | ||
76 | Linear OA(3196, 1109, F3, 43) (dual of [1109, 913, 44]-code) | [i] | ||
77 | Linear OA(3194, 1107, F3, 42) (dual of [1107, 913, 43]-code) | [i] | ||
78 | Linear OA(3245, 747, F3, 63) (dual of [747, 502, 64]-code) | [i] | ||
79 | Linear OA(3233, 747, F3, 60) (dual of [747, 514, 61]-code) | [i] | ||
80 | Linear OA(3240, 769, F3, 59) (dual of [769, 529, 60]-code) | [i] | ||
81 | Linear OA(3228, 757, F3, 58) (dual of [757, 529, 59]-code) | [i] | ||
82 | Linear OA(3218, 747, F3, 54) (dual of [747, 529, 55]-code) | [i] | ||
83 | Linear OA(3206, 747, F3, 51) (dual of [747, 541, 52]-code) | [i] | ||
84 | Linear OA(3194, 747, F3, 48) (dual of [747, 553, 49]-code) | [i] | ||
85 | Linear OA(3182, 747, F3, 45) (dual of [747, 565, 46]-code) | [i] | ||
86 | Linear OA(3170, 747, F3, 42) (dual of [747, 577, 43]-code) | [i] | ||
87 | Linear OA(3158, 747, F3, 39) (dual of [747, 589, 40]-code) | [i] | ||
88 | Linear OA(3146, 747, F3, 36) (dual of [747, 601, 37]-code) | [i] | ||
89 | Linear OA(3134, 747, F3, 33) (dual of [747, 613, 34]-code) | [i] | ||
90 | Linear OA(3143, 765, F3, 34) (dual of [765, 622, 35]-code) | [i] | ||
91 | Linear OA(3141, 763, F3, 33) (dual of [763, 622, 34]-code) | [i] | ||
92 | Linear OA(3122, 744, F3, 30) (dual of [744, 622, 31]-code) | [i] | ||
93 | Linear OA(3131, 765, F3, 31) (dual of [765, 634, 32]-code) | [i] | ||
94 | Linear OA(3129, 763, F3, 30) (dual of [763, 634, 31]-code) | [i] | ||
95 | Linear OA(3113, 747, F3, 27) (dual of [747, 634, 28]-code) | [i] | ||
96 | Linear OA(3101, 747, F3, 24) (dual of [747, 646, 25]-code) | [i] | ||
97 | Linear OA(389, 747, F3, 21) (dual of [747, 658, 22]-code) | [i] | ||
98 | Linear OA(377, 747, F3, 18) (dual of [747, 670, 19]-code) | [i] | ||
99 | Linear OA(365, 747, F3, 15) (dual of [747, 682, 16]-code) | [i] | ||
100 | Linear OA(353, 747, F3, 12) (dual of [747, 694, 13]-code) | [i] | ||
101 | Linear OA(3130, 259, F3, 42) (dual of [259, 129, 43]-code) | [i] | ||
102 | Linear OA(3127, 271, F3, 40) (dual of [271, 144, 41]-code) | [i] | ||
103 | Linear OA(3115, 259, F3, 36) (dual of [259, 144, 37]-code) | [i] | ||
104 | Linear OA(3119, 283, F3, 33) (dual of [283, 164, 34]-code) | [i] | ||
105 | Linear OA(395, 259, F3, 27) (dual of [259, 164, 28]-code) | [i] | ||
106 | Linear OA(3104, 278, F3, 28) (dual of [278, 174, 29]-code) | [i] | ||
107 | Linear OA(3102, 276, F3, 27) (dual of [276, 174, 28]-code) | [i] | ||
108 | Linear OA(385, 259, F3, 24) (dual of [259, 174, 25]-code) | [i] | ||
109 | Linear OA(392, 276, F3, 24) (dual of [276, 184, 25]-code) | [i] | ||
110 | Linear OA(375, 259, F3, 21) (dual of [259, 184, 22]-code) | [i] | ||
111 | Linear OA(365, 259, F3, 18) (dual of [259, 194, 19]-code) | [i] | ||
112 | Linear OA(355, 259, F3, 15) (dual of [259, 204, 16]-code) | [i] | ||
113 | Linear OA(345, 259, F3, 12) (dual of [259, 214, 13]-code) | [i] | ||
114 | Linear OA(345, 97, F3, 16) (dual of [97, 52, 17]-code) | [i] | ||
115 | Linear OA(335, 93, F3, 12) (dual of [93, 58, 13]-code) | [i] |