Information on Result #606330
Linear OA(32, 3, F3, 2) (dual of [3, 1, 3]-code or 3-arc in PG(1,3)), using Reed–Solomon code RS(1,3)
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(319, 85, F3, 7) (dual of [85, 66, 8]-code) | [i] | Construction X with Cyclic Codes | |
2 | Linear OA(327, 85, F3, 9) (dual of [85, 58, 10]-code) | [i] | ||
3 | Linear OA(391, 102, F3, 53) (dual of [102, 11, 54]-code) | [i] | Construction XX with a Chain of Cyclic Codes | |
4 | Linear OA(383, 94, F3, 50) (dual of [94, 11, 51]-code) | [i] | ||
5 | Linear OA(378, 89, F3, 46) (dual of [89, 11, 47]-code) | [i] | ||
6 | Linear OA(3112, 118, F3, 73) (dual of [118, 6, 74]-code) | [i] | ||
7 | Linear OA(388, 94, F3, 58) (dual of [94, 6, 59]-code) | [i] | ||
8 | Linear OA(383, 89, F3, 54) (dual of [89, 6, 55]-code) | [i] | ||
9 | Linear OA(390, 102, F3, 52) (dual of [102, 12, 53]-code) | [i] | ||
10 | Linear OA(382, 94, F3, 49) (dual of [94, 12, 50]-code) | [i] | ||
11 | Linear OA(377, 89, F3, 45) (dual of [89, 12, 46]-code) | [i] | ||
12 | Linear OA(3208, 1113, F3, 45) (dual of [1113, 905, 46]-code) | [i] | Construction XX with a Chain of Extended Narrow-Sense BCH Codes | |
13 | Linear OA(3200, 1105, F3, 44) (dual of [1105, 905, 45]-code) | [i] | ||
14 | Linear OA(3248, 764, F3, 62) (dual of [764, 516, 63]-code) | [i] | ||
15 | Linear OA(3239, 755, F3, 61) (dual of [755, 516, 62]-code) | [i] | ||
16 | Linear OA(3229, 745, F3, 59) (dual of [745, 516, 60]-code) | [i] | ||
17 | Linear OA(3221, 737, F3, 58) (dual of [737, 516, 59]-code) | [i] | ||
18 | Linear OA(3250, 267, F3, 145) (dual of [267, 17, 146]-code) | [i] | ||
19 | Linear OA(3247, 264, F3, 143) (dual of [264, 17, 144]-code) | [i] | ||
20 | Linear OA(3241, 258, F3, 140) (dual of [258, 17, 141]-code) | [i] | ||
21 | Linear OA(3242, 269, F3, 134) (dual of [269, 27, 135]-code) | [i] | ||
22 | Linear OA(3231, 258, F3, 131) (dual of [258, 27, 132]-code) | [i] | ||
23 | Linear OA(3226, 253, F3, 127) (dual of [253, 27, 128]-code) | [i] | ||
24 | Linear OA(3145, 253, F3, 49) (dual of [253, 108, 50]-code) | [i] | ||
25 | Linear OA(3136, 269, F3, 43) (dual of [269, 133, 44]-code) | [i] | ||
26 | Linear OA(3128, 261, F3, 41) (dual of [261, 133, 42]-code) | [i] | ||
27 | Linear OA(3120, 253, F3, 40) (dual of [253, 133, 41]-code) | [i] | ||
28 | Linear OA(354, 131, F3, 17) (dual of [131, 77, 18]-code) | [i] | ||
29 | Linear OA(3113, 119, F3, 74) (dual of [119, 6, 75]-code) | [i] | ||
30 | Linear OA(389, 95, F3, 59) (dual of [95, 6, 60]-code) | [i] | ||
31 | Linear OA(384, 90, F3, 55) (dual of [90, 6, 56]-code) | [i] | ||
32 | Linear OA(391, 103, F3, 53) (dual of [103, 12, 54]-code) | [i] | ||
33 | Linear OA(383, 95, F3, 50) (dual of [95, 12, 51]-code) | [i] | ||
34 | Linear OA(378, 90, F3, 46) (dual of [90, 12, 47]-code) | [i] | ||
35 | Linear OA(353, 88, F3, 22) (dual of [88, 35, 23]-code) | [i] | ||
36 | Linear OA(3244, 261, F3, 141) (dual of [261, 17, 142]-code) | [i] | ||
37 | Linear OA(328, 59, F3, 12) (dual of [59, 31, 13]-code) | [i] | Construction X with Varšamov Bound | |
38 | Linear OA(342, 85, F3, 17) (dual of [85, 43, 18]-code) | [i] | ||
39 | Linear OA(349, 68, F3, 23) (dual of [68, 19, 24]-code) | [i] | ||
40 | Linear OA(375, 2208, F3, 15) (dual of [2208, 2133, 16]-code) | [i] | ||
41 | Linear OA(379, 116, F3, 33) (dual of [116, 37, 34]-code) | [i] | ||
42 | Linear OA(385, 6584, F3, 15) (dual of [6584, 6499, 16]-code) | [i] | ||
43 | Linear OA(385, 59075, F3, 12) (dual of [59075, 58990, 13]-code) | [i] | ||
44 | Linear OA(392, 115, F3, 43) (dual of [115, 23, 44]-code) | [i] | ||
45 | Linear OA(392, 245, F3, 29) (dual of [245, 153, 30]-code) | [i] | ||
46 | Linear OA(393, 114, F3, 45) (dual of [114, 21, 46]-code) | [i] | ||
47 | Linear OA(393, 116, F3, 44) (dual of [116, 23, 45]-code) | [i] | ||
48 | Linear OA(393, 246, F3, 30) (dual of [246, 153, 31]-code) | [i] | ||
49 | Linear OA(393, 177175, F3, 12) (dual of [177175, 177082, 13]-code) | [i] | ||
50 | Linear OA(395, 19708, F3, 15) (dual of [19708, 19613, 16]-code) | [i] | ||
51 | Linear OA(399, 252, F3, 32) (dual of [252, 153, 33]-code) | [i] | ||
52 | Linear OA(3101, 531471, F3, 12) (dual of [531471, 531370, 13]-code) | [i] | ||
53 | Linear OA(3105, 59076, F3, 15) (dual of [59076, 58971, 16]-code) | [i] | ||
54 | Linear OA(3109, 19720, F3, 17) (dual of [19720, 19611, 18]-code) | [i] | ||
55 | Linear OA(3109, 1594355, F3, 12) (dual of [1594355, 1594246, 13]-code) | [i] | ||
56 | Linear OA(3119, 140, F3, 58) (dual of [140, 21, 59]-code) | [i] | ||
57 | Linear OA(3120, 141, F3, 59) (dual of [141, 21, 60]-code) | [i] | ||
58 | Linear OA(3126, 2230, F3, 25) (dual of [2230, 2104, 26]-code) | [i] | ||
59 | Linear OA(3127, 148, F3, 63) (dual of [148, 21, 64]-code) | [i] | ||
60 | Linear OA(3140, 2229, F3, 28) (dual of [2229, 2089, 29]-code) | [i] | ||
61 | Linear OA(3140, 6606, F3, 24) (dual of [6606, 6466, 25]-code) | [i] | ||
62 | Linear OA(3152, 174, F3, 76) (dual of [174, 22, 77]-code) | [i] | ||
63 | Linear OA(3154, 2230, F3, 31) (dual of [2230, 2076, 32]-code) | [i] | ||
64 | Linear OA(3159, 181, F3, 80) (dual of [181, 22, 81]-code) | [i] | ||
65 | Linear OA(3167, 192, F3, 82) (dual of [192, 25, 83]-code) | [i] | ||
66 | Linear OA(3168, 193, F3, 83) (dual of [193, 25, 84]-code) | [i] | ||
67 | Linear OA(3168, 2229, F3, 34) (dual of [2229, 2061, 35]-code) | [i] | ||
68 | Linear OA(3172, 6606, F3, 30) (dual of [6606, 6434, 31]-code) | [i] | ||
69 | Linear OA(3174, 199, F3, 86) (dual of [199, 25, 87]-code) | [i] | ||
70 | Linear OA(3175, 200, F3, 87) (dual of [200, 25, 88]-code) | [i] | ||
71 | Linear OA(3176, 209, F3, 83) (dual of [209, 33, 84]-code) | [i] | ||
72 | Linear OA(3177, 210, F3, 84) (dual of [210, 33, 85]-code) | [i] | ||
73 | Linear OA(3178, 211, F3, 85) (dual of [211, 33, 86]-code) | [i] | ||
74 | Linear OA(3182, 2230, F3, 37) (dual of [2230, 2048, 38]-code) | [i] | ||
75 | Linear OA(3196, 6621, F3, 34) (dual of [6621, 6425, 35]-code) | [i] | ||
76 | Linear OA(3212, 6621, F3, 37) (dual of [6621, 6409, 38]-code) | [i] | ||
77 | Linear OA(3218, 19758, F3, 33) (dual of [19758, 19540, 34]-code) | [i] | ||
78 | Linear OA(3228, 6621, F3, 40) (dual of [6621, 6393, 41]-code) | [i] | ||
79 | Linear OA(3244, 6621, F3, 43) (dual of [6621, 6377, 44]-code) | [i] | ||
80 | Linear OA(345, 94, F3, 17) (dual of [94, 49, 18]-code) | [i] | ||
81 | Linear OA(346, 95, F3, 18) (dual of [95, 49, 19]-code) | [i] | ||
82 | Linear OA(354, 79, F3, 24) (dual of [79, 25, 25]-code) | [i] | ||
83 | Linear OA(369, 116, F3, 27) (dual of [116, 47, 28]-code) | [i] | ||
84 | Linear OA(349, 104, F3, 18) (dual of [104, 55, 19]-code) | [i] | ||
85 | Linear OA(350, 105, F3, 19) (dual of [105, 55, 20]-code) | [i] | ||
86 | Linear OA(384, 127, F3, 35) (dual of [127, 43, 36]-code) | [i] | ||
87 | Linear OA(3103, 145, F3, 44) (dual of [145, 42, 45]-code) | [i] | ||
88 | Linear OA(3105, 142, F3, 46) (dual of [142, 37, 47]-code) | [i] | ||
89 | Linear OA(3107, 144, F3, 47) (dual of [144, 37, 48]-code) | [i] | ||
90 | Linear OA(3128, 168, F3, 56) (dual of [168, 40, 57]-code) | [i] | ||
91 | Linear OA(3130, 166, F3, 59) (dual of [166, 36, 60]-code) | [i] | ||
92 | Linear OA(3147, 183, F3, 67) (dual of [183, 36, 68]-code) | [i] | ||
93 | Linear OA(3161, 198, F3, 74) (dual of [198, 37, 75]-code) | [i] | ||
94 | Linear OA(3162, 199, F3, 75) (dual of [199, 37, 76]-code) | [i] | ||
95 | Linear OA(3169, 206, F3, 78) (dual of [206, 37, 79]-code) | [i] | ||
96 | Linear OA(3173, 210, F3, 80) (dual of [210, 37, 81]-code) | [i] | ||
97 | Linear OA(3179, 213, F3, 85) (dual of [213, 34, 86]-code) | [i] | ||
98 | Linear OA(3101, 143, F3, 43) (dual of [143, 42, 44]-code) | [i] | ||
99 | Linear OA(3127, 167, F3, 56) (dual of [167, 40, 57]-code) | [i] | ||
100 | Linear OA(3132, 172, F3, 58) (dual of [172, 40, 59]-code) | [i] | ||
101 | Linear OA(3134, 174, F3, 59) (dual of [174, 40, 60]-code) | [i] |