Information on Result #609925
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(3297, 100, F32, 94) (dual of [100, 3, 95]-code) | [i] | Strength Reduction | |
2 | Linear OA(3297, 100, F32, 93) (dual of [100, 3, 94]-code) | [i] | ||
3 | Linear OA(3297, 100, F32, 92) (dual of [100, 3, 93]-code) | [i] | ||
4 | Linear OA(3297, 100, F32, 91) (dual of [100, 3, 92]-code) | [i] | ||
5 | Linear OA(3298, 101, F32, 95) (dual of [101, 3, 96]-code) | [i] | Code Embedding in Larger Space | |
6 | Linear OA(3296, 99, F32, 94) (dual of [99, 3, 95]-code) | [i] | Truncation | |
7 | Linear OA(3295, 98, F32, 93) (dual of [98, 3, 94]-code) | [i] | ||
8 | Linear OA(3294, 97, F32, 92) (dual of [97, 3, 93]-code) | [i] | ||
9 | Linear OA(3293, 96, F32, 91) (dual of [96, 3, 92]-code) | [i] | ||
10 | Linear OA(3292, 95, F32, 90) (dual of [95, 3, 91]-code) | [i] | ||
11 | Linear OA(3291, 94, F32, 89) (dual of [94, 3, 90]-code) | [i] | ||
12 | Linear OA(3290, 93, F32, 88) (dual of [93, 3, 89]-code) | [i] | ||
13 | Linear OA(3289, 92, F32, 87) (dual of [92, 3, 88]-code) | [i] | ||
14 | Linear OA(3288, 91, F32, 86) (dual of [91, 3, 87]-code) | [i] | ||
15 | Linear OA(3287, 90, F32, 85) (dual of [90, 3, 86]-code) | [i] | ||
16 | Linear OA(3286, 89, F32, 84) (dual of [89, 3, 85]-code) | [i] | ||
17 | Linear OA(3285, 88, F32, 83) (dual of [88, 3, 84]-code) | [i] | ||
18 | Linear OA(3284, 87, F32, 82) (dual of [87, 3, 83]-code) | [i] | ||
19 | Linear OA(3283, 86, F32, 81) (dual of [86, 3, 82]-code) | [i] | ||
20 | Linear OA(3282, 85, F32, 80) (dual of [85, 3, 81]-code) | [i] | ||
21 | Linear OA(3281, 84, F32, 79) (dual of [84, 3, 80]-code) | [i] | ||
22 | Linear OA(3280, 83, F32, 78) (dual of [83, 3, 79]-code) | [i] | ||
23 | Linear OA(3279, 82, F32, 77) (dual of [82, 3, 78]-code) | [i] | ||
24 | Linear OA(3278, 81, F32, 76) (dual of [81, 3, 77]-code) | [i] | ||
25 | Linear OA(3277, 80, F32, 75) (dual of [80, 3, 76]-code) | [i] | ||
26 | Linear OA(3276, 79, F32, 74) (dual of [79, 3, 75]-code) | [i] | ||
27 | Linear OA(3275, 78, F32, 73) (dual of [78, 3, 74]-code) | [i] | ||
28 | Linear OA(3274, 77, F32, 72) (dual of [77, 3, 73]-code) | [i] | ||
29 | Linear OA(3273, 76, F32, 71) (dual of [76, 3, 72]-code) | [i] | ||
30 | Linear OA(3272, 75, F32, 70) (dual of [75, 3, 71]-code) | [i] | ||
31 | Linear OA(3271, 74, F32, 69) (dual of [74, 3, 70]-code) | [i] | ||
32 | Linear OA(3270, 73, F32, 68) (dual of [73, 3, 69]-code) | [i] | ||
33 | Linear OA(3269, 72, F32, 67) (dual of [72, 3, 68]-code) | [i] | ||
34 | Linear OA(3268, 71, F32, 66) (dual of [71, 3, 67]-code) | [i] | ||
35 | Linear OA(3267, 70, F32, 65) (dual of [70, 3, 66]-code) | [i] | ||
36 | Linear OA(3266, 69, F32, 64) (dual of [69, 3, 65]-code) | [i] | ||
37 | Linear OA(3265, 68, F32, 63) (dual of [68, 3, 64]-code) | [i] | ||
38 | Linear OA(3264, 67, F32, 62) (dual of [67, 3, 63]-code) | [i] | ||
39 | Linear OA(3263, 66, F32, 61) (dual of [66, 3, 62]-code) | [i] | ||
40 | Linear OA(3262, 65, F32, 60) (dual of [65, 3, 61]-code) | [i] | ||
41 | Linear OA(3261, 64, F32, 59) (dual of [64, 3, 60]-code) | [i] | ||
42 | Linear OA(3260, 63, F32, 58) (dual of [63, 3, 59]-code) | [i] | ||
43 | Linear OA(3259, 62, F32, 57) (dual of [62, 3, 58]-code) | [i] | ||
44 | Linear OA(3258, 61, F32, 56) (dual of [61, 3, 57]-code) | [i] | ||
45 | Linear OA(3257, 60, F32, 55) (dual of [60, 3, 56]-code) | [i] | ||
46 | Linear OA(3256, 59, F32, 54) (dual of [59, 3, 55]-code) | [i] | ||
47 | Linear OA(3255, 58, F32, 53) (dual of [58, 3, 54]-code) | [i] | ||
48 | Linear OA(3254, 57, F32, 52) (dual of [57, 3, 53]-code) | [i] | ||
49 | Linear OA(3253, 56, F32, 51) (dual of [56, 3, 52]-code) | [i] | ||
50 | Linear OA(3252, 55, F32, 50) (dual of [55, 3, 51]-code) | [i] | ||
51 | Linear OA(3251, 54, F32, 49) (dual of [54, 3, 50]-code) | [i] | ||
52 | Linear OA(3250, 53, F32, 48) (dual of [53, 3, 49]-code) | [i] | ||
53 | Linear OA(3249, 52, F32, 47) (dual of [52, 3, 48]-code) | [i] | ||
54 | Linear OA(3248, 51, F32, 46) (dual of [51, 3, 47]-code) | [i] | ||
55 | Linear OA(3247, 50, F32, 45) (dual of [50, 3, 46]-code) | [i] | ||
56 | Linear OA(3246, 49, F32, 44) (dual of [49, 3, 45]-code) | [i] | ||
57 | Linear OA(3245, 48, F32, 43) (dual of [48, 3, 44]-code) | [i] | ||
58 | Linear OA(3244, 47, F32, 42) (dual of [47, 3, 43]-code) | [i] | ||
59 | Linear OA(3243, 46, F32, 41) (dual of [46, 3, 42]-code) | [i] | ||
60 | Linear OA(32100, 103, F32, 96) (dual of [103, 3, 97]-code) | [i] | Juxtaposition | |
61 | Linear OA(32101, 104, F32, 97) (dual of [104, 3, 98]-code) | [i] | ||
62 | Linear OA(32102, 105, F32, 98) (dual of [105, 3, 99]-code) | [i] | ||
63 | Linear OA(32103, 106, F32, 99) (dual of [106, 3, 100]-code) | [i] | ||
64 | Linear OA(32104, 107, F32, 100) (dual of [107, 3, 101]-code) | [i] | ||
65 | Linear OA(32105, 108, F32, 101) (dual of [108, 3, 102]-code) | [i] | ||
66 | Linear OA(32106, 109, F32, 102) (dual of [109, 3, 103]-code) | [i] | ||
67 | Linear OA(32107, 110, F32, 103) (dual of [110, 3, 104]-code) | [i] | ||
68 | Linear OA(32108, 111, F32, 104) (dual of [111, 3, 105]-code) | [i] | ||
69 | Linear OA(32109, 112, F32, 105) (dual of [112, 3, 106]-code) | [i] | ||
70 | Linear OA(32110, 113, F32, 106) (dual of [113, 3, 107]-code) | [i] | ||
71 | Linear OOA(3297, 50, F32, 2, 95) (dual of [(50, 2), 3, 96]-NRT-code) | [i] | OOA Folding |