Information on Result #609968
Linear OA(2172, 174, F2, 115) (dual of [174, 2, 116]-code), using repeating each code word 58 times based on linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2172, 174, F2, 114) (dual of [174, 2, 115]-code) | [i] | Strength Reduction | |
2 | Linear OA(2172, 174, F2, 113) (dual of [174, 2, 114]-code) | [i] | ||
3 | Linear OA(2172, 174, F2, 112) (dual of [174, 2, 113]-code) | [i] | ||
4 | Linear OA(2172, 174, F2, 111) (dual of [174, 2, 112]-code) | [i] | ||
5 | Linear OA(2172, 174, F2, 110) (dual of [174, 2, 111]-code) | [i] | ||
6 | Linear OA(2172, 174, F2, 109) (dual of [174, 2, 110]-code) | [i] | ||
7 | Linear OA(2172, 174, F2, 108) (dual of [174, 2, 109]-code) | [i] | ||
8 | Linear OA(2172, 174, F2, 107) (dual of [174, 2, 108]-code) | [i] | ||
9 | Linear OA(2172, 174, F2, 106) (dual of [174, 2, 107]-code) | [i] | ||
10 | Linear OA(2172, 174, F2, 105) (dual of [174, 2, 106]-code) | [i] | ||
11 | Linear OA(2172, 174, F2, 104) (dual of [174, 2, 105]-code) | [i] | ||
12 | Linear OA(2172, 174, F2, 103) (dual of [174, 2, 104]-code) | [i] | ||
13 | Linear OA(2172, 174, F2, 102) (dual of [174, 2, 103]-code) | [i] | ||
14 | Linear OA(2172, 174, F2, 101) (dual of [174, 2, 102]-code) | [i] | ||
15 | Linear OA(2172, 174, F2, 100) (dual of [174, 2, 101]-code) | [i] | ||
16 | Linear OA(2171, 173, F2, 114) (dual of [173, 2, 115]-code) | [i] | Truncation | |
17 | Linear OA(2170, 172, F2, 113) (dual of [172, 2, 114]-code) | [i] | ||
18 | Linear OA(2168, 170, F2, 111) (dual of [170, 2, 112]-code) | [i] | ||
19 | Linear OA(2167, 169, F2, 110) (dual of [169, 2, 111]-code) | [i] | ||
20 | Linear OA(2165, 167, F2, 108) (dual of [167, 2, 109]-code) | [i] | ||
21 | Linear OA(2164, 166, F2, 107) (dual of [166, 2, 108]-code) | [i] | ||
22 | Linear OA(2162, 164, F2, 105) (dual of [164, 2, 106]-code) | [i] | ||
23 | Linear OA(2161, 163, F2, 104) (dual of [163, 2, 105]-code) | [i] | ||
24 | Linear OA(2159, 161, F2, 102) (dual of [161, 2, 103]-code) | [i] | ||
25 | Linear OA(2158, 160, F2, 101) (dual of [160, 2, 102]-code) | [i] | ||
26 | Linear OA(2156, 158, F2, 99) (dual of [158, 2, 100]-code) | [i] | ||
27 | Linear OA(2155, 157, F2, 98) (dual of [157, 2, 99]-code) | [i] | ||
28 | Linear OA(2153, 155, F2, 96) (dual of [155, 2, 97]-code) | [i] | ||
29 | Linear OA(2152, 154, F2, 95) (dual of [154, 2, 96]-code) | [i] | ||
30 | Linear OA(2150, 152, F2, 93) (dual of [152, 2, 94]-code) | [i] | ||
31 | Linear OA(2149, 151, F2, 92) (dual of [151, 2, 93]-code) | [i] | ||
32 | Linear OA(2147, 149, F2, 90) (dual of [149, 2, 91]-code) | [i] | ||
33 | Linear OA(2146, 148, F2, 89) (dual of [148, 2, 90]-code) | [i] | ||
34 | Linear OA(2144, 146, F2, 87) (dual of [146, 2, 88]-code) | [i] | ||
35 | Linear OA(2143, 145, F2, 86) (dual of [145, 2, 87]-code) | [i] | ||
36 | Linear OA(2141, 143, F2, 84) (dual of [143, 2, 85]-code) | [i] | ||
37 | Linear OA(2140, 142, F2, 83) (dual of [142, 2, 84]-code) | [i] | ||
38 | Linear OA(2138, 140, F2, 81) (dual of [140, 2, 82]-code) | [i] | ||
39 | Linear OA(2137, 139, F2, 80) (dual of [139, 2, 81]-code) | [i] | ||
40 | Linear OA(2135, 137, F2, 78) (dual of [137, 2, 79]-code) | [i] | ||
41 | Linear OOA(2172, 87, F2, 2, 115) (dual of [(87, 2), 2, 116]-NRT-code) | [i] | OOA Folding | |
42 | Linear OOA(2172, 58, F2, 3, 115) (dual of [(58, 3), 2, 116]-NRT-code) | [i] |