Information on Result #609970
Linear OA(2166, 168, F2, 111) (dual of [168, 2, 112]-code), using repeating each code word 56 times based on linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2166, 168, F2, 110) (dual of [168, 2, 111]-code) | [i] | Strength Reduction | |
2 | Linear OA(2166, 168, F2, 109) (dual of [168, 2, 110]-code) | [i] | ||
3 | Linear OA(2166, 168, F2, 108) (dual of [168, 2, 109]-code) | [i] | ||
4 | Linear OA(2166, 168, F2, 107) (dual of [168, 2, 108]-code) | [i] | ||
5 | Linear OA(2166, 168, F2, 106) (dual of [168, 2, 107]-code) | [i] | ||
6 | Linear OA(2166, 168, F2, 105) (dual of [168, 2, 106]-code) | [i] | ||
7 | Linear OA(2166, 168, F2, 104) (dual of [168, 2, 105]-code) | [i] | ||
8 | Linear OA(2166, 168, F2, 103) (dual of [168, 2, 104]-code) | [i] | ||
9 | Linear OA(2166, 168, F2, 102) (dual of [168, 2, 103]-code) | [i] | ||
10 | Linear OA(2166, 168, F2, 101) (dual of [168, 2, 102]-code) | [i] | ||
11 | Linear OA(2166, 168, F2, 100) (dual of [168, 2, 101]-code) | [i] | ||
12 | Linear OA(2166, 168, F2, 99) (dual of [168, 2, 100]-code) | [i] | ||
13 | Linear OA(2166, 168, F2, 98) (dual of [168, 2, 99]-code) | [i] | ||
14 | Linear OA(2166, 168, F2, 97) (dual of [168, 2, 98]-code) | [i] | ||
15 | Linear OA(2166, 168, F2, 96) (dual of [168, 2, 97]-code) | [i] | ||
16 | Linear OA(2165, 167, F2, 110) (dual of [167, 2, 111]-code) | [i] | Truncation | |
17 | Linear OA(2164, 166, F2, 109) (dual of [166, 2, 110]-code) | [i] | ||
18 | Linear OA(2162, 164, F2, 107) (dual of [164, 2, 108]-code) | [i] | ||
19 | Linear OA(2161, 163, F2, 106) (dual of [163, 2, 107]-code) | [i] | ||
20 | Linear OA(2159, 161, F2, 104) (dual of [161, 2, 105]-code) | [i] | ||
21 | Linear OA(2158, 160, F2, 103) (dual of [160, 2, 104]-code) | [i] | ||
22 | Linear OA(2156, 158, F2, 101) (dual of [158, 2, 102]-code) | [i] | ||
23 | Linear OA(2155, 157, F2, 100) (dual of [157, 2, 101]-code) | [i] | ||
24 | Linear OA(2153, 155, F2, 98) (dual of [155, 2, 99]-code) | [i] | ||
25 | Linear OA(2152, 154, F2, 97) (dual of [154, 2, 98]-code) | [i] | ||
26 | Linear OA(2150, 152, F2, 95) (dual of [152, 2, 96]-code) | [i] | ||
27 | Linear OA(2149, 151, F2, 94) (dual of [151, 2, 95]-code) | [i] | ||
28 | Linear OA(2147, 149, F2, 92) (dual of [149, 2, 93]-code) | [i] | ||
29 | Linear OA(2146, 148, F2, 91) (dual of [148, 2, 92]-code) | [i] | ||
30 | Linear OA(2144, 146, F2, 89) (dual of [146, 2, 90]-code) | [i] | ||
31 | Linear OA(2143, 145, F2, 88) (dual of [145, 2, 89]-code) | [i] | ||
32 | Linear OA(2141, 143, F2, 86) (dual of [143, 2, 87]-code) | [i] | ||
33 | Linear OA(2140, 142, F2, 85) (dual of [142, 2, 86]-code) | [i] | ||
34 | Linear OA(2138, 140, F2, 83) (dual of [140, 2, 84]-code) | [i] | ||
35 | Linear OA(2137, 139, F2, 82) (dual of [139, 2, 83]-code) | [i] | ||
36 | Linear OA(2135, 137, F2, 80) (dual of [137, 2, 81]-code) | [i] | ||
37 | Linear OA(2134, 136, F2, 79) (dual of [136, 2, 80]-code) | [i] | ||
38 | Linear OA(2132, 134, F2, 77) (dual of [134, 2, 78]-code) | [i] | ||
39 | Linear OA(2131, 133, F2, 76) (dual of [133, 2, 77]-code) | [i] | ||
40 | Linear OOA(2166, 84, F2, 2, 111) (dual of [(84, 2), 2, 112]-NRT-code) | [i] | OOA Folding | |
41 | Linear OOA(2166, 56, F2, 3, 111) (dual of [(56, 3), 2, 112]-NRT-code) | [i] | ||
42 | Linear OOA(2166, 24, F2, 7, 111) (dual of [(24, 7), 2, 112]-NRT-code) | [i] |