Information on Result #609982
Linear OA(2130, 132, F2, 87) (dual of [132, 2, 88]-code), using repeating each code word 44 times based on linear OA(21, 3, F2, 1) (dual of [3, 2, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(2130, 132, F2, 86) (dual of [132, 2, 87]-code) | [i] | Strength Reduction | |
2 | Linear OA(2130, 132, F2, 85) (dual of [132, 2, 86]-code) | [i] | ||
3 | Linear OA(2130, 132, F2, 84) (dual of [132, 2, 85]-code) | [i] | ||
4 | Linear OA(2130, 132, F2, 83) (dual of [132, 2, 84]-code) | [i] | ||
5 | Linear OA(2130, 132, F2, 82) (dual of [132, 2, 83]-code) | [i] | ||
6 | Linear OA(2130, 132, F2, 81) (dual of [132, 2, 82]-code) | [i] | ||
7 | Linear OA(2130, 132, F2, 80) (dual of [132, 2, 81]-code) | [i] | ||
8 | Linear OA(2130, 132, F2, 79) (dual of [132, 2, 80]-code) | [i] | ||
9 | Linear OA(2130, 132, F2, 78) (dual of [132, 2, 79]-code) | [i] | ||
10 | Linear OA(2130, 132, F2, 77) (dual of [132, 2, 78]-code) | [i] | ||
11 | Linear OA(2130, 132, F2, 76) (dual of [132, 2, 77]-code) | [i] | ||
12 | Linear OA(2129, 131, F2, 86) (dual of [131, 2, 87]-code) | [i] | Truncation | |
13 | Linear OA(2128, 130, F2, 85) (dual of [130, 2, 86]-code) | [i] | ||
14 | Linear OA(2126, 128, F2, 83) (dual of [128, 2, 84]-code) | [i] | ||
15 | Linear OA(2125, 127, F2, 82) (dual of [127, 2, 83]-code) | [i] | ||
16 | Linear OA(2123, 125, F2, 80) (dual of [125, 2, 81]-code) | [i] | ||
17 | Linear OA(2122, 124, F2, 79) (dual of [124, 2, 80]-code) | [i] | ||
18 | Linear OA(2120, 122, F2, 77) (dual of [122, 2, 78]-code) | [i] | ||
19 | Linear OA(2119, 121, F2, 76) (dual of [121, 2, 77]-code) | [i] | ||
20 | Linear OA(2117, 119, F2, 74) (dual of [119, 2, 75]-code) | [i] | ||
21 | Linear OA(2116, 118, F2, 73) (dual of [118, 2, 74]-code) | [i] | ||
22 | Linear OA(2114, 116, F2, 71) (dual of [116, 2, 72]-code) | [i] | ||
23 | Linear OA(2113, 115, F2, 70) (dual of [115, 2, 71]-code) | [i] | ||
24 | Linear OA(2111, 113, F2, 68) (dual of [113, 2, 69]-code) | [i] | ||
25 | Linear OA(2110, 112, F2, 67) (dual of [112, 2, 68]-code) | [i] | ||
26 | Linear OA(2108, 110, F2, 65) (dual of [110, 2, 66]-code) | [i] | ||
27 | Linear OA(2107, 109, F2, 64) (dual of [109, 2, 65]-code) | [i] | ||
28 | Linear OA(2105, 107, F2, 62) (dual of [107, 2, 63]-code) | [i] | ||
29 | Linear OA(2104, 106, F2, 61) (dual of [106, 2, 62]-code) | [i] | ||
30 | Linear OOA(2130, 66, F2, 2, 87) (dual of [(66, 2), 2, 88]-NRT-code) | [i] | OOA Folding | |
31 | Linear OOA(2130, 44, F2, 3, 87) (dual of [(44, 3), 2, 88]-NRT-code) | [i] |