Information on Result #610045

Linear OA(2186, 189, F2, 107) (dual of [189, 3, 108]-code), using repeating each code word 27 times based on linear OA(24, 7, F2, 3) (dual of [7, 3, 4]-code or 7-cap in PG(3,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2186, 189, F2, 106) (dual of [189, 3, 107]-code) [i]Strength Reduction
2Linear OA(2186, 189, F2, 105) (dual of [189, 3, 106]-code) [i]
3Linear OA(2186, 189, F2, 104) (dual of [189, 3, 105]-code) [i]
4Linear OA(2186, 189, F2, 103) (dual of [189, 3, 104]-code) [i]
5Linear OA(2186, 189, F2, 102) (dual of [189, 3, 103]-code) [i]
6Linear OA(2186, 189, F2, 101) (dual of [189, 3, 102]-code) [i]
7Linear OA(2186, 189, F2, 100) (dual of [189, 3, 101]-code) [i]
8Linear OA(2187, 190, F2, 107) (dual of [190, 3, 108]-code) [i]Code Embedding in Larger Space
9Linear OA(2185, 188, F2, 106) (dual of [188, 3, 107]-code) [i]Truncation
10Linear OA(2184, 187, F2, 105) (dual of [187, 3, 106]-code) [i]
11Linear OA(2182, 185, F2, 103) (dual of [185, 3, 104]-code) [i]
12Linear OA(2181, 184, F2, 102) (dual of [184, 3, 103]-code) [i]
13Linear OA(2180, 183, F2, 101) (dual of [183, 3, 102]-code) [i]
14Linear OA(2178, 181, F2, 99) (dual of [181, 3, 100]-code) [i]
15Linear OA(2177, 180, F2, 98) (dual of [180, 3, 99]-code) [i]
16Linear OA(2175, 178, F2, 96) (dual of [178, 3, 97]-code) [i]
17Linear OA(2174, 177, F2, 95) (dual of [177, 3, 96]-code) [i]
18Linear OA(2173, 176, F2, 94) (dual of [176, 3, 95]-code) [i]
19Linear OA(2171, 174, F2, 92) (dual of [174, 3, 93]-code) [i]
20Linear OOA(2186, 63, F2, 3, 107) (dual of [(63, 3), 3, 108]-NRT-code) [i]OOA Folding
21Linear OOA(2186, 27, F2, 7, 107) (dual of [(27, 7), 3, 108]-NRT-code) [i]