Information on Result #610051

Linear OA(2165, 168, F2, 95) (dual of [168, 3, 96]-code), using repeating each code word 24 times based on linear OA(24, 7, F2, 3) (dual of [7, 3, 4]-code or 7-cap in PG(3,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2165, 168, F2, 94) (dual of [168, 3, 95]-code) [i]Strength Reduction
2Linear OA(2165, 168, F2, 93) (dual of [168, 3, 94]-code) [i]
3Linear OA(2165, 168, F2, 92) (dual of [168, 3, 93]-code) [i]
4Linear OA(2165, 168, F2, 91) (dual of [168, 3, 92]-code) [i]
5Linear OA(2165, 168, F2, 90) (dual of [168, 3, 91]-code) [i]
6Linear OA(2165, 168, F2, 89) (dual of [168, 3, 90]-code) [i]
7Linear OA(2166, 169, F2, 95) (dual of [169, 3, 96]-code) [i]Code Embedding in Larger Space
8Linear OA(2164, 167, F2, 94) (dual of [167, 3, 95]-code) [i]Truncation
9Linear OA(2163, 166, F2, 93) (dual of [166, 3, 94]-code) [i]
10Linear OA(2161, 164, F2, 91) (dual of [164, 3, 92]-code) [i]
11Linear OA(2160, 163, F2, 90) (dual of [163, 3, 91]-code) [i]
12Linear OA(2159, 162, F2, 89) (dual of [162, 3, 90]-code) [i]
13Linear OA(2157, 160, F2, 87) (dual of [160, 3, 88]-code) [i]
14Linear OA(2156, 159, F2, 86) (dual of [159, 3, 87]-code) [i]
15Linear OA(2154, 157, F2, 84) (dual of [157, 3, 85]-code) [i]
16Linear OA(2153, 156, F2, 83) (dual of [156, 3, 84]-code) [i]
17Linear OA(2152, 155, F2, 82) (dual of [155, 3, 83]-code) [i]
18Linear OOA(2165, 84, F2, 2, 95) (dual of [(84, 2), 3, 96]-NRT-code) [i]OOA Folding
19Linear OOA(2165, 56, F2, 3, 95) (dual of [(56, 3), 3, 96]-NRT-code) [i]