Information on Result #610057

Linear OA(2144, 147, F2, 83) (dual of [147, 3, 84]-code), using repeating each code word 21 times based on linear OA(24, 7, F2, 3) (dual of [7, 3, 4]-code or 7-cap in PG(3,2)), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2144, 147, F2, 82) (dual of [147, 3, 83]-code) [i]Strength Reduction
2Linear OA(2144, 147, F2, 81) (dual of [147, 3, 82]-code) [i]
3Linear OA(2144, 147, F2, 80) (dual of [147, 3, 81]-code) [i]
4Linear OA(2144, 147, F2, 79) (dual of [147, 3, 80]-code) [i]
5Linear OA(2144, 147, F2, 78) (dual of [147, 3, 79]-code) [i]
6Linear OA(2145, 148, F2, 83) (dual of [148, 3, 84]-code) [i]Code Embedding in Larger Space
7Linear OA(2143, 146, F2, 82) (dual of [146, 3, 83]-code) [i]Truncation
8Linear OA(2142, 145, F2, 81) (dual of [145, 3, 82]-code) [i]
9Linear OA(2140, 143, F2, 79) (dual of [143, 3, 80]-code) [i]
10Linear OA(2139, 142, F2, 78) (dual of [142, 3, 79]-code) [i]
11Linear OA(2138, 141, F2, 77) (dual of [141, 3, 78]-code) [i]
12Linear OA(2136, 139, F2, 75) (dual of [139, 3, 76]-code) [i]
13Linear OA(2135, 138, F2, 74) (dual of [138, 3, 75]-code) [i]
14Linear OA(2133, 136, F2, 72) (dual of [136, 3, 73]-code) [i]
15Linear OOA(2144, 49, F2, 3, 83) (dual of [(49, 3), 3, 84]-NRT-code) [i]OOA Folding