Information on Result #610802

Linear OA(224, 48, F2, 11) (dual of [48, 24, 12]-code), using extended quadratic residue code Qe(48,2)

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(224, 48, F2, 10) (dual of [48, 24, 11]-code) [i]Strength Reduction
2Linear OA(225, 49, F2, 11) (dual of [49, 24, 12]-code) [i]Code Embedding in Larger Space
3Linear OA(226, 50, F2, 11) (dual of [50, 24, 12]-code) [i]
4Linear OA(227, 51, F2, 11) (dual of [51, 24, 12]-code) [i]
5Linear OA(223, 47, F2, 10) (dual of [47, 24, 11]-code) [i]Truncation
6Linear OA(222, 46, F2, 9) (dual of [46, 24, 10]-code) [i]
7Linear OA(221, 45, F2, 8) (dual of [45, 24, 9]-code) [i]
8Linear OA(267, 99, F2, 23) (dual of [99, 32, 24]-code) [i](u, u+v)-Construction
9Linear OA(235, 81, F2, 11) (dual of [81, 46, 12]-code) [i]
10Linear OA(2123, 165, F2, 43) (dual of [165, 42, 44]-code) [i]Construction X with Cyclic Codes
11Linear OA(2122, 165, F2, 42) (dual of [165, 43, 43]-code) [i]
12Linear OA(2257, 295, F2, 101) (dual of [295, 38, 102]-code) [i]
13Linear OA(2257, 303, F2, 97) (dual of [303, 46, 98]-code) [i]
14Linear OA(2149, 178, F2, 58) (dual of [178, 29, 59]-code) [i]Construction XX with Cyclic Codes
15Linear OA(2145, 174, F2, 56) (dual of [174, 29, 57]-code) [i]
16Linear OA(2145, 173, F2, 57) (dual of [173, 28, 58]-code) [i]
17Linear OA(2260, 298, F2, 103) (dual of [298, 38, 104]-code) [i]
18Linear OA(2130, 177, F2, 42) (dual of [177, 47, 43]-code) [i]Construction XX with a Chain of Cyclic Codes
19Linear OA(2259, 296, F2, 103) (dual of [296, 37, 104]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
20Linear OA(2259, 304, F2, 99) (dual of [304, 45, 100]-code) [i]
21Linear OA(2165, 304, F2, 43) (dual of [304, 139, 44]-code) [i]
22Linear OA(2137, 166, F2, 55) (dual of [166, 29, 56]-code) [i]
23Linear OA(284, 99, F2, 35) (dual of [99, 15, 36]-code) [i]Construction X with De Boer–Brouwer Codes
24Linear OA(2144, 165, F2, 59) (dual of [165, 21, 60]-code) [i]
25Linear OA(2143, 165, F2, 58) (dual of [165, 22, 59]-code) [i]
26Linear OA(2174, 199, F2, 59) (dual of [199, 25, 60]-code) [i]Construction XX with a Chain of De Boer–Brouwer Codes
27Linear OA(2172, 196, F2, 59) (dual of [196, 24, 60]-code) [i]
28Linear OA(2168, 191, F2, 59) (dual of [191, 23, 60]-code) [i]
29Linear OA(2160, 182, F2, 59) (dual of [182, 22, 60]-code) [i]
30Linear OA(2173, 199, F2, 58) (dual of [199, 26, 59]-code) [i]
31Linear OA(2171, 196, F2, 58) (dual of [196, 25, 59]-code) [i]
32Linear OA(2167, 191, F2, 58) (dual of [191, 24, 59]-code) [i]
33Linear OA(2159, 182, F2, 58) (dual of [182, 23, 59]-code) [i]
34Linear OOA(224, 24, F2, 2, 11) (dual of [(24, 2), 24, 12]-NRT-code) [i]OOA Folding
35Linear OOA(224, 16, F2, 3, 11) (dual of [(16, 3), 24, 12]-NRT-code) [i]
36Linear OOA(224, 12, F2, 4, 11) (dual of [(12, 4), 24, 12]-NRT-code) [i]