Information on Result #611143
Linear OA(277, 256, F2, 21) (dual of [256, 179, 22]-code), using an extension Ce(20) of the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,20], and designed minimum distance d ≥ |I|+1 = 21
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OA(287, 267, F2, 21) (dual of [267, 180, 22]-code) | [i] | (u, u+v)-Construction | |
2 | Linear OA(286, 265, F2, 23) (dual of [265, 179, 24]-code) | [i] | ✔ | Construction X with Extended Narrow-Sense BCH Codes |
3 | Linear OA(278, 265, F2, 21) (dual of [265, 187, 22]-code) | [i] | ✔ | |
4 | Linear OA(298, 272, F2, 25) (dual of [272, 174, 26]-code) | [i] | ✔ | |
5 | Linear OA(299, 278, F2, 25) (dual of [278, 179, 26]-code) | [i] | ✔ | |
6 | Linear OA(282, 272, F2, 21) (dual of [272, 190, 22]-code) | [i] | ✔ | |
7 | Linear OA(283, 274, F2, 21) (dual of [274, 191, 22]-code) | [i] | ✔ | |
8 | Linear OA(2112, 289, F2, 27) (dual of [289, 177, 28]-code) | [i] | ✔ | |
9 | Linear OA(2114, 293, F2, 27) (dual of [293, 179, 28]-code) | [i] | ✔ | |
10 | Linear OA(288, 287, F2, 21) (dual of [287, 199, 22]-code) | [i] | ✔ | |
11 | Linear OA(2123, 295, F2, 28) (dual of [295, 172, 29]-code) | [i] | ✔ | Construction XX with a Chain of Extended Narrow-Sense BCH Codes |
12 | Linear OA(2111, 285, F2, 27) (dual of [285, 174, 28]-code) | [i] | ✔ | |
13 | Linear OA(2110, 283, F2, 27) (dual of [283, 173, 28]-code) | [i] | ✔ | |
14 | Linear OA(2109, 281, F2, 27) (dual of [281, 172, 28]-code) | [i] | ✔ | |
15 | Linear OA(2115, 295, F2, 26) (dual of [295, 180, 27]-code) | [i] | ✔ | |
16 | Linear OA(297, 270, F2, 25) (dual of [270, 173, 26]-code) | [i] | ✔ | |
17 | Linear OA(296, 268, F2, 25) (dual of [268, 172, 26]-code) | [i] | ✔ | |
18 | Linear OA(2103, 285, F2, 25) (dual of [285, 182, 26]-code) | [i] | ✔ | |
19 | Linear OA(2102, 283, F2, 25) (dual of [283, 181, 26]-code) | [i] | ✔ | |
20 | Linear OA(2101, 281, F2, 25) (dual of [281, 180, 26]-code) | [i] | ✔ | |
21 | Linear OA(289, 270, F2, 23) (dual of [270, 181, 24]-code) | [i] | ✔ | |
22 | Linear OA(288, 268, F2, 23) (dual of [268, 180, 24]-code) | [i] | ✔ | |
23 | Linear OA(281, 270, F2, 21) (dual of [270, 189, 22]-code) | [i] | ✔ | |
24 | Linear OA(280, 268, F2, 21) (dual of [268, 188, 22]-code) | [i] | ✔ | |
25 | Linear OA(287, 281, F2, 21) (dual of [281, 194, 22]-code) | [i] | ✔ | |
26 | Linear OA(286, 279, F2, 21) (dual of [279, 193, 22]-code) | [i] | ✔ | |
27 | Linear OA(285, 277, F2, 21) (dual of [277, 192, 22]-code) | [i] | ✔ | |
28 | Linear OA(290, 290, F2, 21) (dual of [290, 200, 22]-code) | [i] | ✔ | |
29 | Linear OOA(277, 128, F2, 2, 21) (dual of [(128, 2), 179, 22]-NRT-code) | [i] | OOA Folding | |
30 | Linear OOA(277, 64, F2, 4, 21) (dual of [(64, 4), 179, 22]-NRT-code) | [i] |