Information on Result #612002

Linear OA(386, 243, F3, 26) (dual of [243, 157, 27]-code), using an extension Ce(25) of the primitive narrow-sense BCH-code C(I) with length 242 = 35−1, defining interval I = [1,25], and designed minimum distance d ≥ |I|+1 = 26

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(399, 257, F3, 26) (dual of [257, 158, 27]-code) [i](u, u+v)-Construction
2Linear OA(392, 249, F3, 28) (dual of [249, 157, 29]-code) [i]Construction X with Extended Narrow-Sense BCH Codes
3Linear OA(395, 248, F3, 31) (dual of [248, 153, 32]-code) [i]
4Linear OA(396, 253, F3, 31) (dual of [253, 157, 32]-code) [i]
5Linear OA(393, 247, F3, 29) (dual of [247, 154, 30]-code) [i]
6Linear OA(386, 248, F3, 26) (dual of [248, 162, 27]-code) [i]
7Linear OA(3102, 255, F3, 32) (dual of [255, 153, 33]-code) [i]
8Linear OA(3103, 257, F3, 32) (dual of [257, 154, 33]-code) [i]
9Linear OA(3104, 261, F3, 32) (dual of [261, 157, 33]-code) [i]
10Linear OA(389, 256, F3, 26) (dual of [256, 167, 27]-code) [i]
11Linear OA(3112, 266, F3, 34) (dual of [266, 154, 35]-code) [i]
12Linear OA(3114, 271, F3, 34) (dual of [271, 157, 35]-code) [i]
13Linear OA(391, 263, F3, 26) (dual of [263, 172, 27]-code) [i]
14Linear OA(3123, 279, F3, 35) (dual of [279, 156, 36]-code) [i]
15Linear OA(3124, 281, F3, 35) (dual of [281, 157, 36]-code) [i]
16Linear OA(394, 271, F3, 26) (dual of [271, 177, 27]-code) [i]
17Linear OA(3132, 288, F3, 38) (dual of [288, 156, 39]-code) [i]
18Linear OA(3127, 282, F3, 36) (dual of [282, 155, 37]-code) [i]Construction XX with a Chain of Extended Narrow-Sense BCH Codes
19Linear OA(3128, 282, F3, 37) (dual of [282, 154, 38]-code) [i]
20Linear OA(3126, 280, F3, 36) (dual of [280, 154, 37]-code) [i]
21Linear OA(3130, 283, F3, 38) (dual of [283, 153, 39]-code) [i]
22Linear OA(3126, 279, F3, 37) (dual of [279, 153, 38]-code) [i]
23Linear OA(3124, 277, F3, 36) (dual of [277, 153, 37]-code) [i]
24Linear OA(3122, 275, F3, 35) (dual of [275, 153, 36]-code) [i]
25Linear OA(3122, 279, F3, 35) (dual of [279, 157, 36]-code) [i]
26Linear OA(3121, 277, F3, 35) (dual of [277, 156, 36]-code) [i]
27Linear OA(3120, 275, F3, 35) (dual of [275, 155, 36]-code) [i]
28Linear OA(3118, 272, F3, 35) (dual of [272, 154, 36]-code) [i]
29Linear OA(3117, 270, F3, 35) (dual of [270, 153, 36]-code) [i]
30Linear OA(3112, 269, F3, 33) (dual of [269, 157, 34]-code) [i]
31Linear OA(3111, 267, F3, 33) (dual of [267, 156, 34]-code) [i]
32Linear OA(3113, 268, F3, 34) (dual of [268, 155, 35]-code) [i]
33Linear OA(3110, 265, F3, 33) (dual of [265, 155, 34]-code) [i]
34Linear OA(3109, 263, F3, 33) (dual of [263, 154, 34]-code) [i]
35Linear OA(3110, 263, F3, 34) (dual of [263, 153, 35]-code) [i]
36Linear OA(3107, 260, F3, 33) (dual of [260, 153, 34]-code) [i]
37Linear OA(3101, 254, F3, 32) (dual of [254, 153, 33]-code) [i]
38Linear OA(3107, 267, F3, 32) (dual of [267, 160, 33]-code) [i]
39Linear OA(3105, 263, F3, 32) (dual of [263, 158, 33]-code) [i]
40Linear OA(393, 251, F3, 28) (dual of [251, 158, 29]-code) [i]
41Linear OA(388, 251, F3, 26) (dual of [251, 163, 27]-code) [i]
42Linear OA(399, 279, F3, 26) (dual of [279, 180, 27]-code) [i]
43Linear OA(398, 277, F3, 26) (dual of [277, 179, 27]-code) [i]
44Linear OA(397, 275, F3, 26) (dual of [275, 178, 27]-code) [i]
45Linear OA(3130, 284, F3, 38) (dual of [284, 154, 39]-code) [i]
46Linear OA(3128, 281, F3, 38) (dual of [281, 153, 39]-code) [i]